Verify
false
Share
Copied to clipboard
27\times 21+\frac{1}{21}+21=462
Rewrite 21^{2} as 21\times 21. Cancel out 21 in both numerator and denominator.
567+\frac{1}{21}+21=462
Multiply 27 and 21 to get 567.
\frac{11907}{21}+\frac{1}{21}+21=462
Convert 567 to fraction \frac{11907}{21}.
\frac{11907+1}{21}+21=462
Since \frac{11907}{21} and \frac{1}{21} have the same denominator, add them by adding their numerators.
\frac{11908}{21}+21=462
Add 11907 and 1 to get 11908.
\frac{11908}{21}+\frac{441}{21}=462
Convert 21 to fraction \frac{441}{21}.
\frac{11908+441}{21}=462
Since \frac{11908}{21} and \frac{441}{21} have the same denominator, add them by adding their numerators.
\frac{12349}{21}=462
Add 11908 and 441 to get 12349.
\frac{12349}{21}=\frac{9702}{21}
Convert 462 to fraction \frac{9702}{21}.
\text{false}
Compare \frac{12349}{21} and \frac{9702}{21}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}