Solve for x
x<\frac{49}{27}
Graph
Share
Copied to clipboard
\frac{5-3x}{4}>\frac{-3}{27}
Divide both sides by 27. Since 27 is positive, the inequality direction remains the same.
\frac{5-3x}{4}>-\frac{1}{9}
Reduce the fraction \frac{-3}{27} to lowest terms by extracting and canceling out 3.
5-3x>-\frac{1}{9}\times 4
Multiply both sides by 4. Since 4 is positive, the inequality direction remains the same.
5-3x>\frac{-4}{9}
Express -\frac{1}{9}\times 4 as a single fraction.
5-3x>-\frac{4}{9}
Fraction \frac{-4}{9} can be rewritten as -\frac{4}{9} by extracting the negative sign.
-3x>-\frac{4}{9}-5
Subtract 5 from both sides.
-3x>-\frac{4}{9}-\frac{45}{9}
Convert 5 to fraction \frac{45}{9}.
-3x>\frac{-4-45}{9}
Since -\frac{4}{9} and \frac{45}{9} have the same denominator, subtract them by subtracting their numerators.
-3x>-\frac{49}{9}
Subtract 45 from -4 to get -49.
x<\frac{-\frac{49}{9}}{-3}
Divide both sides by -3. Since -3 is negative, the inequality direction is changed.
x<\frac{-49}{9\left(-3\right)}
Express \frac{-\frac{49}{9}}{-3} as a single fraction.
x<\frac{-49}{-27}
Multiply 9 and -3 to get -27.
x<\frac{49}{27}
Fraction \frac{-49}{-27} can be simplified to \frac{49}{27} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}