Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

27^{\frac{4}{3}}+\frac{\sqrt{243}\times \frac{4}{5}}{\left(\sqrt{125}\right)^{1}}
Divide 9 by 9 to get 1.
81+\frac{\sqrt{243}\times \frac{4}{5}}{\left(\sqrt{125}\right)^{1}}
Calculate 27 to the power of \frac{4}{3} and get 81.
81+\frac{9\sqrt{3}\times \frac{4}{5}}{\left(\sqrt{125}\right)^{1}}
Factor 243=9^{2}\times 3. Rewrite the square root of the product \sqrt{9^{2}\times 3} as the product of square roots \sqrt{9^{2}}\sqrt{3}. Take the square root of 9^{2}.
81+\frac{\frac{36}{5}\sqrt{3}}{\left(\sqrt{125}\right)^{1}}
Multiply 9 and \frac{4}{5} to get \frac{36}{5}.
81+\frac{\frac{36}{5}\sqrt{3}}{\sqrt{125}}
Calculate \sqrt{125} to the power of 1 and get \sqrt{125}.
81+\frac{\frac{36}{5}\sqrt{3}\sqrt{125}}{\left(\sqrt{125}\right)^{2}}
Rationalize the denominator of \frac{\frac{36}{5}\sqrt{3}}{\sqrt{125}} by multiplying numerator and denominator by \sqrt{125}.
81+\frac{\frac{36}{5}\sqrt{3}\sqrt{125}}{125}
The square of \sqrt{125} is 125.
81+\frac{\frac{36}{5}\sqrt{3}\times 5\sqrt{5}}{125}
Factor 125=5^{2}\times 5. Rewrite the square root of the product \sqrt{5^{2}\times 5} as the product of square roots \sqrt{5^{2}}\sqrt{5}. Take the square root of 5^{2}.
81+\frac{36\sqrt{3}\sqrt{5}}{125}
Multiply \frac{36}{5} and 5 to get 36.
81+\frac{36\sqrt{15}}{125}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
\frac{81\times 125}{125}+\frac{36\sqrt{15}}{125}
To add or subtract expressions, expand them to make their denominators the same. Multiply 81 times \frac{125}{125}.
\frac{81\times 125+36\sqrt{15}}{125}
Since \frac{81\times 125}{125} and \frac{36\sqrt{15}}{125} have the same denominator, add them by adding their numerators.
\frac{10125+36\sqrt{15}}{125}
Do the multiplications in 81\times 125+36\sqrt{15}.