Factor
-\left(5x-9\right)\left(5x+3\right)
Evaluate
27+30x-25x^{2}
Graph
Share
Copied to clipboard
-25x^{2}+30x+27
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=30 ab=-25\times 27=-675
Factor the expression by grouping. First, the expression needs to be rewritten as -25x^{2}+ax+bx+27. To find a and b, set up a system to be solved.
-1,675 -3,225 -5,135 -9,75 -15,45 -25,27
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -675.
-1+675=674 -3+225=222 -5+135=130 -9+75=66 -15+45=30 -25+27=2
Calculate the sum for each pair.
a=45 b=-15
The solution is the pair that gives sum 30.
\left(-25x^{2}+45x\right)+\left(-15x+27\right)
Rewrite -25x^{2}+30x+27 as \left(-25x^{2}+45x\right)+\left(-15x+27\right).
-5x\left(5x-9\right)-3\left(5x-9\right)
Factor out -5x in the first and -3 in the second group.
\left(5x-9\right)\left(-5x-3\right)
Factor out common term 5x-9 by using distributive property.
-25x^{2}+30x+27=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-30±\sqrt{30^{2}-4\left(-25\right)\times 27}}{2\left(-25\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-30±\sqrt{900-4\left(-25\right)\times 27}}{2\left(-25\right)}
Square 30.
x=\frac{-30±\sqrt{900+100\times 27}}{2\left(-25\right)}
Multiply -4 times -25.
x=\frac{-30±\sqrt{900+2700}}{2\left(-25\right)}
Multiply 100 times 27.
x=\frac{-30±\sqrt{3600}}{2\left(-25\right)}
Add 900 to 2700.
x=\frac{-30±60}{2\left(-25\right)}
Take the square root of 3600.
x=\frac{-30±60}{-50}
Multiply 2 times -25.
x=\frac{30}{-50}
Now solve the equation x=\frac{-30±60}{-50} when ± is plus. Add -30 to 60.
x=-\frac{3}{5}
Reduce the fraction \frac{30}{-50} to lowest terms by extracting and canceling out 10.
x=-\frac{90}{-50}
Now solve the equation x=\frac{-30±60}{-50} when ± is minus. Subtract 60 from -30.
x=\frac{9}{5}
Reduce the fraction \frac{-90}{-50} to lowest terms by extracting and canceling out 10.
-25x^{2}+30x+27=-25\left(x-\left(-\frac{3}{5}\right)\right)\left(x-\frac{9}{5}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{3}{5} for x_{1} and \frac{9}{5} for x_{2}.
-25x^{2}+30x+27=-25\left(x+\frac{3}{5}\right)\left(x-\frac{9}{5}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-25x^{2}+30x+27=-25\times \frac{-5x-3}{-5}\left(x-\frac{9}{5}\right)
Add \frac{3}{5} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-25x^{2}+30x+27=-25\times \frac{-5x-3}{-5}\times \frac{-5x+9}{-5}
Subtract \frac{9}{5} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-25x^{2}+30x+27=-25\times \frac{\left(-5x-3\right)\left(-5x+9\right)}{-5\left(-5\right)}
Multiply \frac{-5x-3}{-5} times \frac{-5x+9}{-5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
-25x^{2}+30x+27=-25\times \frac{\left(-5x-3\right)\left(-5x+9\right)}{25}
Multiply -5 times -5.
-25x^{2}+30x+27=-\left(-5x-3\right)\left(-5x+9\right)
Cancel out 25, the greatest common factor in -25 and 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}