Solve for x
x\leq \frac{19}{12}
Graph
Share
Copied to clipboard
30+10+6\left(-6\right)x+27\geq 10
Add 27 and 3 to get 30.
40+6\left(-6\right)x+27\geq 10
Add 30 and 10 to get 40.
40-36x+27\geq 10
Multiply 6 and -6 to get -36.
67-36x\geq 10
Add 40 and 27 to get 67.
-36x\geq 10-67
Subtract 67 from both sides.
-36x\geq -57
Subtract 67 from 10 to get -57.
x\leq \frac{-57}{-36}
Divide both sides by -36. Since -36 is negative, the inequality direction is changed.
x\leq \frac{19}{12}
Reduce the fraction \frac{-57}{-36} to lowest terms by extracting and canceling out -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}