Solve for x
x=0
Graph
Share
Copied to clipboard
\left(26x\right)^{2}=\left(\sqrt{\frac{9x^{2}}{8}}\right)^{2}
Square both sides of the equation.
26^{2}x^{2}=\left(\sqrt{\frac{9x^{2}}{8}}\right)^{2}
Expand \left(26x\right)^{2}.
676x^{2}=\left(\sqrt{\frac{9x^{2}}{8}}\right)^{2}
Calculate 26 to the power of 2 and get 676.
676x^{2}=\frac{9x^{2}}{8}
Calculate \sqrt{\frac{9x^{2}}{8}} to the power of 2 and get \frac{9x^{2}}{8}.
5408x^{2}=9x^{2}
Multiply both sides of the equation by 8.
5408x^{2}-9x^{2}=0
Subtract 9x^{2} from both sides.
5399x^{2}=0
Combine 5408x^{2} and -9x^{2} to get 5399x^{2}.
x^{2}=0
Divide both sides by 5399. Zero divided by any non-zero number gives zero.
x=0 x=0
Take the square root of both sides of the equation.
x=0
The equation is now solved. Solutions are the same.
26\times 0=\sqrt{\frac{9\times 0^{2}}{8}}
Substitute 0 for x in the equation 26x=\sqrt{\frac{9x^{2}}{8}}.
0=0
Simplify. The value x=0 satisfies the equation.
x=0
Equation 26x=\sqrt{\frac{9x^{2}}{8}} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}