Solve for R_0
R_{0}=1076
Share
Copied to clipboard
269\times 12\times 1=12R_{0}\times \frac{1}{12}+12R_{0}\times \frac{1}{12}+12R_{0}\times \frac{1}{12}
Variable R_{0} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 12R_{0}, the least common multiple of R_{0},12.
3228\times 1=12R_{0}\times \frac{1}{12}+12R_{0}\times \frac{1}{12}+12R_{0}\times \frac{1}{12}
Multiply 269 and 12 to get 3228.
3228=12R_{0}\times \frac{1}{12}+12R_{0}\times \frac{1}{12}+12R_{0}\times \frac{1}{12}
Multiply 3228 and 1 to get 3228.
3228=R_{0}+12R_{0}\times \frac{1}{12}+12R_{0}\times \frac{1}{12}
Cancel out 12 and 12.
3228=R_{0}+R_{0}+12R_{0}\times \frac{1}{12}
Cancel out 12 and 12.
3228=2R_{0}+12R_{0}\times \frac{1}{12}
Combine R_{0} and R_{0} to get 2R_{0}.
3228=2R_{0}+R_{0}
Cancel out 12 and 12.
3228=3R_{0}
Combine 2R_{0} and R_{0} to get 3R_{0}.
3R_{0}=3228
Swap sides so that all variable terms are on the left hand side.
R_{0}=\frac{3228}{3}
Divide both sides by 3.
R_{0}=1076
Divide 3228 by 3 to get 1076.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}