Evaluate
\frac{269}{20}=13.45
Factor
\frac{269}{2 ^ {2} \cdot 5} = 13\frac{9}{20} = 13.45
Share
Copied to clipboard
\begin{array}{l}\phantom{20)}\phantom{1}\\20\overline{)269}\\\end{array}
Use the 1^{st} digit 2 from dividend 269
\begin{array}{l}\phantom{20)}0\phantom{2}\\20\overline{)269}\\\end{array}
Since 2 is less than 20, use the next digit 6 from dividend 269 and add 0 to the quotient
\begin{array}{l}\phantom{20)}0\phantom{3}\\20\overline{)269}\\\end{array}
Use the 2^{nd} digit 6 from dividend 269
\begin{array}{l}\phantom{20)}01\phantom{4}\\20\overline{)269}\\\phantom{20)}\underline{\phantom{}20\phantom{9}}\\\phantom{20)9}6\\\end{array}
Find closest multiple of 20 to 26. We see that 1 \times 20 = 20 is the nearest. Now subtract 20 from 26 to get reminder 6. Add 1 to quotient.
\begin{array}{l}\phantom{20)}01\phantom{5}\\20\overline{)269}\\\phantom{20)}\underline{\phantom{}20\phantom{9}}\\\phantom{20)9}69\\\end{array}
Use the 3^{rd} digit 9 from dividend 269
\begin{array}{l}\phantom{20)}013\phantom{6}\\20\overline{)269}\\\phantom{20)}\underline{\phantom{}20\phantom{9}}\\\phantom{20)9}69\\\phantom{20)}\underline{\phantom{9}60\phantom{}}\\\phantom{20)99}9\\\end{array}
Find closest multiple of 20 to 69. We see that 3 \times 20 = 60 is the nearest. Now subtract 60 from 69 to get reminder 9. Add 3 to quotient.
\text{Quotient: }13 \text{Reminder: }9
Since 9 is less than 20, stop the division. The reminder is 9. The topmost line 013 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}