Evaluate
\frac{532799}{6}\approx 88799.833333333
Factor
\frac{677 \cdot 787}{2 \cdot 3} = 88799\frac{5}{6} = 88799.83333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{30)}\phantom{1}\\30\overline{)2663995}\\\end{array}
Use the 1^{st} digit 2 from dividend 2663995
\begin{array}{l}\phantom{30)}0\phantom{2}\\30\overline{)2663995}\\\end{array}
Since 2 is less than 30, use the next digit 6 from dividend 2663995 and add 0 to the quotient
\begin{array}{l}\phantom{30)}0\phantom{3}\\30\overline{)2663995}\\\end{array}
Use the 2^{nd} digit 6 from dividend 2663995
\begin{array}{l}\phantom{30)}00\phantom{4}\\30\overline{)2663995}\\\end{array}
Since 26 is less than 30, use the next digit 6 from dividend 2663995 and add 0 to the quotient
\begin{array}{l}\phantom{30)}00\phantom{5}\\30\overline{)2663995}\\\end{array}
Use the 3^{rd} digit 6 from dividend 2663995
\begin{array}{l}\phantom{30)}008\phantom{6}\\30\overline{)2663995}\\\phantom{30)}\underline{\phantom{}240\phantom{9999}}\\\phantom{30)9}26\\\end{array}
Find closest multiple of 30 to 266. We see that 8 \times 30 = 240 is the nearest. Now subtract 240 from 266 to get reminder 26. Add 8 to quotient.
\begin{array}{l}\phantom{30)}008\phantom{7}\\30\overline{)2663995}\\\phantom{30)}\underline{\phantom{}240\phantom{9999}}\\\phantom{30)9}263\\\end{array}
Use the 4^{th} digit 3 from dividend 2663995
\begin{array}{l}\phantom{30)}0088\phantom{8}\\30\overline{)2663995}\\\phantom{30)}\underline{\phantom{}240\phantom{9999}}\\\phantom{30)9}263\\\phantom{30)}\underline{\phantom{9}240\phantom{999}}\\\phantom{30)99}23\\\end{array}
Find closest multiple of 30 to 263. We see that 8 \times 30 = 240 is the nearest. Now subtract 240 from 263 to get reminder 23. Add 8 to quotient.
\begin{array}{l}\phantom{30)}0088\phantom{9}\\30\overline{)2663995}\\\phantom{30)}\underline{\phantom{}240\phantom{9999}}\\\phantom{30)9}263\\\phantom{30)}\underline{\phantom{9}240\phantom{999}}\\\phantom{30)99}239\\\end{array}
Use the 5^{th} digit 9 from dividend 2663995
\begin{array}{l}\phantom{30)}00887\phantom{10}\\30\overline{)2663995}\\\phantom{30)}\underline{\phantom{}240\phantom{9999}}\\\phantom{30)9}263\\\phantom{30)}\underline{\phantom{9}240\phantom{999}}\\\phantom{30)99}239\\\phantom{30)}\underline{\phantom{99}210\phantom{99}}\\\phantom{30)999}29\\\end{array}
Find closest multiple of 30 to 239. We see that 7 \times 30 = 210 is the nearest. Now subtract 210 from 239 to get reminder 29. Add 7 to quotient.
\begin{array}{l}\phantom{30)}00887\phantom{11}\\30\overline{)2663995}\\\phantom{30)}\underline{\phantom{}240\phantom{9999}}\\\phantom{30)9}263\\\phantom{30)}\underline{\phantom{9}240\phantom{999}}\\\phantom{30)99}239\\\phantom{30)}\underline{\phantom{99}210\phantom{99}}\\\phantom{30)999}299\\\end{array}
Use the 6^{th} digit 9 from dividend 2663995
\begin{array}{l}\phantom{30)}008879\phantom{12}\\30\overline{)2663995}\\\phantom{30)}\underline{\phantom{}240\phantom{9999}}\\\phantom{30)9}263\\\phantom{30)}\underline{\phantom{9}240\phantom{999}}\\\phantom{30)99}239\\\phantom{30)}\underline{\phantom{99}210\phantom{99}}\\\phantom{30)999}299\\\phantom{30)}\underline{\phantom{999}270\phantom{9}}\\\phantom{30)9999}29\\\end{array}
Find closest multiple of 30 to 299. We see that 9 \times 30 = 270 is the nearest. Now subtract 270 from 299 to get reminder 29. Add 9 to quotient.
\begin{array}{l}\phantom{30)}008879\phantom{13}\\30\overline{)2663995}\\\phantom{30)}\underline{\phantom{}240\phantom{9999}}\\\phantom{30)9}263\\\phantom{30)}\underline{\phantom{9}240\phantom{999}}\\\phantom{30)99}239\\\phantom{30)}\underline{\phantom{99}210\phantom{99}}\\\phantom{30)999}299\\\phantom{30)}\underline{\phantom{999}270\phantom{9}}\\\phantom{30)9999}295\\\end{array}
Use the 7^{th} digit 5 from dividend 2663995
\begin{array}{l}\phantom{30)}0088799\phantom{14}\\30\overline{)2663995}\\\phantom{30)}\underline{\phantom{}240\phantom{9999}}\\\phantom{30)9}263\\\phantom{30)}\underline{\phantom{9}240\phantom{999}}\\\phantom{30)99}239\\\phantom{30)}\underline{\phantom{99}210\phantom{99}}\\\phantom{30)999}299\\\phantom{30)}\underline{\phantom{999}270\phantom{9}}\\\phantom{30)9999}295\\\phantom{30)}\underline{\phantom{9999}270\phantom{}}\\\phantom{30)99999}25\\\end{array}
Find closest multiple of 30 to 295. We see that 9 \times 30 = 270 is the nearest. Now subtract 270 from 295 to get reminder 25. Add 9 to quotient.
\text{Quotient: }88799 \text{Reminder: }25
Since 25 is less than 30, stop the division. The reminder is 25. The topmost line 0088799 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 88799.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}