Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

26500=118x^{2}+4308
Add 660 and 3648 to get 4308.
118x^{2}+4308=26500
Swap sides so that all variable terms are on the left hand side.
118x^{2}=26500-4308
Subtract 4308 from both sides.
118x^{2}=22192
Subtract 4308 from 26500 to get 22192.
x^{2}=\frac{22192}{118}
Divide both sides by 118.
x^{2}=\frac{11096}{59}
Reduce the fraction \frac{22192}{118} to lowest terms by extracting and canceling out 2.
x=\frac{2\sqrt{163666}}{59} x=-\frac{2\sqrt{163666}}{59}
Take the square root of both sides of the equation.
26500=118x^{2}+4308
Add 660 and 3648 to get 4308.
118x^{2}+4308=26500
Swap sides so that all variable terms are on the left hand side.
118x^{2}+4308-26500=0
Subtract 26500 from both sides.
118x^{2}-22192=0
Subtract 26500 from 4308 to get -22192.
x=\frac{0±\sqrt{0^{2}-4\times 118\left(-22192\right)}}{2\times 118}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 118 for a, 0 for b, and -22192 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 118\left(-22192\right)}}{2\times 118}
Square 0.
x=\frac{0±\sqrt{-472\left(-22192\right)}}{2\times 118}
Multiply -4 times 118.
x=\frac{0±\sqrt{10474624}}{2\times 118}
Multiply -472 times -22192.
x=\frac{0±8\sqrt{163666}}{2\times 118}
Take the square root of 10474624.
x=\frac{0±8\sqrt{163666}}{236}
Multiply 2 times 118.
x=\frac{2\sqrt{163666}}{59}
Now solve the equation x=\frac{0±8\sqrt{163666}}{236} when ± is plus.
x=-\frac{2\sqrt{163666}}{59}
Now solve the equation x=\frac{0±8\sqrt{163666}}{236} when ± is minus.
x=\frac{2\sqrt{163666}}{59} x=-\frac{2\sqrt{163666}}{59}
The equation is now solved.