Evaluate
\frac{132}{19}\approx 6.947368421
Factor
\frac{2 ^ {2} \cdot 3 \cdot 11}{19} = 6\frac{18}{19} = 6.947368421052632
Share
Copied to clipboard
\begin{array}{l}\phantom{38)}\phantom{1}\\38\overline{)264}\\\end{array}
Use the 1^{st} digit 2 from dividend 264
\begin{array}{l}\phantom{38)}0\phantom{2}\\38\overline{)264}\\\end{array}
Since 2 is less than 38, use the next digit 6 from dividend 264 and add 0 to the quotient
\begin{array}{l}\phantom{38)}0\phantom{3}\\38\overline{)264}\\\end{array}
Use the 2^{nd} digit 6 from dividend 264
\begin{array}{l}\phantom{38)}00\phantom{4}\\38\overline{)264}\\\end{array}
Since 26 is less than 38, use the next digit 4 from dividend 264 and add 0 to the quotient
\begin{array}{l}\phantom{38)}00\phantom{5}\\38\overline{)264}\\\end{array}
Use the 3^{rd} digit 4 from dividend 264
\begin{array}{l}\phantom{38)}006\phantom{6}\\38\overline{)264}\\\phantom{38)}\underline{\phantom{}228\phantom{}}\\\phantom{38)9}36\\\end{array}
Find closest multiple of 38 to 264. We see that 6 \times 38 = 228 is the nearest. Now subtract 228 from 264 to get reminder 36. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }36
Since 36 is less than 38, stop the division. The reminder is 36. The topmost line 006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}