Evaluate
\frac{6}{5}=1.2
Factor
\frac{2 \cdot 3}{5} = 1\frac{1}{5} = 1.2
Share
Copied to clipboard
\begin{array}{l}\phantom{220)}\phantom{1}\\220\overline{)264}\\\end{array}
Use the 1^{st} digit 2 from dividend 264
\begin{array}{l}\phantom{220)}0\phantom{2}\\220\overline{)264}\\\end{array}
Since 2 is less than 220, use the next digit 6 from dividend 264 and add 0 to the quotient
\begin{array}{l}\phantom{220)}0\phantom{3}\\220\overline{)264}\\\end{array}
Use the 2^{nd} digit 6 from dividend 264
\begin{array}{l}\phantom{220)}00\phantom{4}\\220\overline{)264}\\\end{array}
Since 26 is less than 220, use the next digit 4 from dividend 264 and add 0 to the quotient
\begin{array}{l}\phantom{220)}00\phantom{5}\\220\overline{)264}\\\end{array}
Use the 3^{rd} digit 4 from dividend 264
\begin{array}{l}\phantom{220)}001\phantom{6}\\220\overline{)264}\\\phantom{220)}\underline{\phantom{}220\phantom{}}\\\phantom{220)9}44\\\end{array}
Find closest multiple of 220 to 264. We see that 1 \times 220 = 220 is the nearest. Now subtract 220 from 264 to get reminder 44. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }44
Since 44 is less than 220, stop the division. The reminder is 44. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}