Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

26252x^{2}=3
Add 3 to both sides. Anything plus zero gives itself.
x^{2}=\frac{3}{26252}
Divide both sides by 26252.
x=\frac{\sqrt{19689}}{13126} x=-\frac{\sqrt{19689}}{13126}
Take the square root of both sides of the equation.
26252x^{2}-3=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 26252\left(-3\right)}}{2\times 26252}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 26252 for a, 0 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 26252\left(-3\right)}}{2\times 26252}
Square 0.
x=\frac{0±\sqrt{-105008\left(-3\right)}}{2\times 26252}
Multiply -4 times 26252.
x=\frac{0±\sqrt{315024}}{2\times 26252}
Multiply -105008 times -3.
x=\frac{0±4\sqrt{19689}}{2\times 26252}
Take the square root of 315024.
x=\frac{0±4\sqrt{19689}}{52504}
Multiply 2 times 26252.
x=\frac{\sqrt{19689}}{13126}
Now solve the equation x=\frac{0±4\sqrt{19689}}{52504} when ± is plus.
x=-\frac{\sqrt{19689}}{13126}
Now solve the equation x=\frac{0±4\sqrt{19689}}{52504} when ± is minus.
x=\frac{\sqrt{19689}}{13126} x=-\frac{\sqrt{19689}}{13126}
The equation is now solved.