Solve for t
t = \frac{\log_{1.0034375} {(2)}}{12} \approx 16.832432628
Share
Copied to clipboard
\frac{26000}{13000}=\left(1+\frac{0.04125}{12}\right)^{12t}
Divide both sides by 13000.
2=\left(1+\frac{0.04125}{12}\right)^{12t}
Divide 26000 by 13000 to get 2.
2=\left(1+\frac{4125}{1200000}\right)^{12t}
Expand \frac{0.04125}{12} by multiplying both numerator and the denominator by 100000.
2=\left(1+\frac{11}{3200}\right)^{12t}
Reduce the fraction \frac{4125}{1200000} to lowest terms by extracting and canceling out 375.
2=\left(\frac{3211}{3200}\right)^{12t}
Add 1 and \frac{11}{3200} to get \frac{3211}{3200}.
\left(\frac{3211}{3200}\right)^{12t}=2
Swap sides so that all variable terms are on the left hand side.
\log(\left(\frac{3211}{3200}\right)^{12t})=\log(2)
Take the logarithm of both sides of the equation.
12t\log(\frac{3211}{3200})=\log(2)
The logarithm of a number raised to a power is the power times the logarithm of the number.
12t=\frac{\log(2)}{\log(\frac{3211}{3200})}
Divide both sides by \log(\frac{3211}{3200}).
12t=\log_{\frac{3211}{3200}}\left(2\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
t=\frac{\ln(2)}{12\ln(\frac{3211}{3200})}
Divide both sides by 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}