Evaluate
\frac{50}{13}\approx 3.846153846
Factor
\frac{2 \cdot 5 ^ {2}}{13} = 3\frac{11}{13} = 3.8461538461538463
Share
Copied to clipboard
\begin{array}{l}\phantom{676)}\phantom{1}\\676\overline{)2600}\\\end{array}
Use the 1^{st} digit 2 from dividend 2600
\begin{array}{l}\phantom{676)}0\phantom{2}\\676\overline{)2600}\\\end{array}
Since 2 is less than 676, use the next digit 6 from dividend 2600 and add 0 to the quotient
\begin{array}{l}\phantom{676)}0\phantom{3}\\676\overline{)2600}\\\end{array}
Use the 2^{nd} digit 6 from dividend 2600
\begin{array}{l}\phantom{676)}00\phantom{4}\\676\overline{)2600}\\\end{array}
Since 26 is less than 676, use the next digit 0 from dividend 2600 and add 0 to the quotient
\begin{array}{l}\phantom{676)}00\phantom{5}\\676\overline{)2600}\\\end{array}
Use the 3^{rd} digit 0 from dividend 2600
\begin{array}{l}\phantom{676)}000\phantom{6}\\676\overline{)2600}\\\end{array}
Since 260 is less than 676, use the next digit 0 from dividend 2600 and add 0 to the quotient
\begin{array}{l}\phantom{676)}000\phantom{7}\\676\overline{)2600}\\\end{array}
Use the 4^{th} digit 0 from dividend 2600
\begin{array}{l}\phantom{676)}0003\phantom{8}\\676\overline{)2600}\\\phantom{676)}\underline{\phantom{}2028\phantom{}}\\\phantom{676)9}572\\\end{array}
Find closest multiple of 676 to 2600. We see that 3 \times 676 = 2028 is the nearest. Now subtract 2028 from 2600 to get reminder 572. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }572
Since 572 is less than 676, stop the division. The reminder is 572. The topmost line 0003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}