Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

y^{2}=\frac{48}{26}
Divide both sides by 26.
y^{2}=\frac{24}{13}
Reduce the fraction \frac{48}{26} to lowest terms by extracting and canceling out 2.
y=\frac{2\sqrt{78}}{13} y=-\frac{2\sqrt{78}}{13}
Take the square root of both sides of the equation.
y^{2}=\frac{48}{26}
Divide both sides by 26.
y^{2}=\frac{24}{13}
Reduce the fraction \frac{48}{26} to lowest terms by extracting and canceling out 2.
y^{2}-\frac{24}{13}=0
Subtract \frac{24}{13} from both sides.
y=\frac{0±\sqrt{0^{2}-4\left(-\frac{24}{13}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{24}{13} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\left(-\frac{24}{13}\right)}}{2}
Square 0.
y=\frac{0±\sqrt{\frac{96}{13}}}{2}
Multiply -4 times -\frac{24}{13}.
y=\frac{0±\frac{4\sqrt{78}}{13}}{2}
Take the square root of \frac{96}{13}.
y=\frac{2\sqrt{78}}{13}
Now solve the equation y=\frac{0±\frac{4\sqrt{78}}{13}}{2} when ± is plus.
y=-\frac{2\sqrt{78}}{13}
Now solve the equation y=\frac{0±\frac{4\sqrt{78}}{13}}{2} when ± is minus.
y=\frac{2\sqrt{78}}{13} y=-\frac{2\sqrt{78}}{13}
The equation is now solved.