Factor
26\left(x-\left(-\frac{\sqrt{19591}}{13}+11\right)\right)\left(x-\left(\frac{\sqrt{19591}}{13}+11\right)\right)
Evaluate
26x^{2}-572x+132
Graph
Share
Copied to clipboard
26x^{2}-572x+132=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-572\right)±\sqrt{\left(-572\right)^{2}-4\times 26\times 132}}{2\times 26}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-572\right)±\sqrt{327184-4\times 26\times 132}}{2\times 26}
Square -572.
x=\frac{-\left(-572\right)±\sqrt{327184-104\times 132}}{2\times 26}
Multiply -4 times 26.
x=\frac{-\left(-572\right)±\sqrt{327184-13728}}{2\times 26}
Multiply -104 times 132.
x=\frac{-\left(-572\right)±\sqrt{313456}}{2\times 26}
Add 327184 to -13728.
x=\frac{-\left(-572\right)±4\sqrt{19591}}{2\times 26}
Take the square root of 313456.
x=\frac{572±4\sqrt{19591}}{2\times 26}
The opposite of -572 is 572.
x=\frac{572±4\sqrt{19591}}{52}
Multiply 2 times 26.
x=\frac{4\sqrt{19591}+572}{52}
Now solve the equation x=\frac{572±4\sqrt{19591}}{52} when ± is plus. Add 572 to 4\sqrt{19591}.
x=\frac{\sqrt{19591}}{13}+11
Divide 572+4\sqrt{19591} by 52.
x=\frac{572-4\sqrt{19591}}{52}
Now solve the equation x=\frac{572±4\sqrt{19591}}{52} when ± is minus. Subtract 4\sqrt{19591} from 572.
x=-\frac{\sqrt{19591}}{13}+11
Divide 572-4\sqrt{19591} by 52.
26x^{2}-572x+132=26\left(x-\left(\frac{\sqrt{19591}}{13}+11\right)\right)\left(x-\left(-\frac{\sqrt{19591}}{13}+11\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 11+\frac{\sqrt{19591}}{13} for x_{1} and 11-\frac{\sqrt{19591}}{13} for x_{2}.
x ^ 2 -22x +\frac{66}{13} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 26
r + s = 22 rs = \frac{66}{13}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = 11 - u s = 11 + u
Two numbers r and s sum up to 22 exactly when the average of the two numbers is \frac{1}{2}*22 = 11. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(11 - u) (11 + u) = \frac{66}{13}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{66}{13}
121 - u^2 = \frac{66}{13}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{66}{13}-121 = -\frac{1507}{13}
Simplify the expression by subtracting 121 on both sides
u^2 = \frac{1507}{13} u = \pm\sqrt{\frac{1507}{13}} = \pm \frac{\sqrt{1507}}{\sqrt{13}}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =11 - \frac{\sqrt{1507}}{\sqrt{13}} = 0.233 s = 11 + \frac{\sqrt{1507}}{\sqrt{13}} = 21.767
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}