Solve for x (complex solution)
x=i\sqrt{\sqrt{46}+6}\approx 3.575238451i
x=-i\sqrt{\sqrt{46}+6}\approx -0-3.575238451i
x=-\sqrt{\sqrt{46}-6}\approx -0.884494196
x=\sqrt{\sqrt{46}-6}\approx 0.884494196
Solve for x
x=-\sqrt{\sqrt{46}-6}\approx -0.884494196
x=\sqrt{\sqrt{46}-6}\approx 0.884494196
Graph
Quiz
Quadratic Equation
5 problems similar to:
26 x ^ { 2 } + 8 x ^ { 4 } - 20 = 6 x ^ { 4 } + 2 x ^ { 2 }
Share
Copied to clipboard
26x^{2}+8x^{4}-20-6x^{4}=2x^{2}
Subtract 6x^{4} from both sides.
26x^{2}+2x^{4}-20=2x^{2}
Combine 8x^{4} and -6x^{4} to get 2x^{4}.
26x^{2}+2x^{4}-20-2x^{2}=0
Subtract 2x^{2} from both sides.
24x^{2}+2x^{4}-20=0
Combine 26x^{2} and -2x^{2} to get 24x^{2}.
2t^{2}+24t-20=0
Substitute t for x^{2}.
t=\frac{-24±\sqrt{24^{2}-4\times 2\left(-20\right)}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 2 for a, 24 for b, and -20 for c in the quadratic formula.
t=\frac{-24±4\sqrt{46}}{4}
Do the calculations.
t=\sqrt{46}-6 t=-\sqrt{46}-6
Solve the equation t=\frac{-24±4\sqrt{46}}{4} when ± is plus and when ± is minus.
x=-\sqrt{\sqrt{46}-6} x=\sqrt{\sqrt{46}-6} x=-i\sqrt{\sqrt{46}+6} x=i\sqrt{\sqrt{46}+6}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
26x^{2}+8x^{4}-20-6x^{4}=2x^{2}
Subtract 6x^{4} from both sides.
26x^{2}+2x^{4}-20=2x^{2}
Combine 8x^{4} and -6x^{4} to get 2x^{4}.
26x^{2}+2x^{4}-20-2x^{2}=0
Subtract 2x^{2} from both sides.
24x^{2}+2x^{4}-20=0
Combine 26x^{2} and -2x^{2} to get 24x^{2}.
2t^{2}+24t-20=0
Substitute t for x^{2}.
t=\frac{-24±\sqrt{24^{2}-4\times 2\left(-20\right)}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 2 for a, 24 for b, and -20 for c in the quadratic formula.
t=\frac{-24±4\sqrt{46}}{4}
Do the calculations.
t=\sqrt{46}-6 t=-\sqrt{46}-6
Solve the equation t=\frac{-24±4\sqrt{46}}{4} when ± is plus and when ± is minus.
x=\sqrt{\sqrt{46}-6} x=-\sqrt{\sqrt{46}-6}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}