Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

26x^{2}+8x^{4}-20-6x^{4}=2x^{2}
Subtract 6x^{4} from both sides.
26x^{2}+2x^{4}-20=2x^{2}
Combine 8x^{4} and -6x^{4} to get 2x^{4}.
26x^{2}+2x^{4}-20-2x^{2}=0
Subtract 2x^{2} from both sides.
24x^{2}+2x^{4}-20=0
Combine 26x^{2} and -2x^{2} to get 24x^{2}.
2t^{2}+24t-20=0
Substitute t for x^{2}.
t=\frac{-24±\sqrt{24^{2}-4\times 2\left(-20\right)}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 2 for a, 24 for b, and -20 for c in the quadratic formula.
t=\frac{-24±4\sqrt{46}}{4}
Do the calculations.
t=\sqrt{46}-6 t=-\sqrt{46}-6
Solve the equation t=\frac{-24±4\sqrt{46}}{4} when ± is plus and when ± is minus.
x=-\sqrt{\sqrt{46}-6} x=\sqrt{\sqrt{46}-6} x=-i\sqrt{\sqrt{46}+6} x=i\sqrt{\sqrt{46}+6}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
26x^{2}+8x^{4}-20-6x^{4}=2x^{2}
Subtract 6x^{4} from both sides.
26x^{2}+2x^{4}-20=2x^{2}
Combine 8x^{4} and -6x^{4} to get 2x^{4}.
26x^{2}+2x^{4}-20-2x^{2}=0
Subtract 2x^{2} from both sides.
24x^{2}+2x^{4}-20=0
Combine 26x^{2} and -2x^{2} to get 24x^{2}.
2t^{2}+24t-20=0
Substitute t for x^{2}.
t=\frac{-24±\sqrt{24^{2}-4\times 2\left(-20\right)}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 2 for a, 24 for b, and -20 for c in the quadratic formula.
t=\frac{-24±4\sqrt{46}}{4}
Do the calculations.
t=\sqrt{46}-6 t=-\sqrt{46}-6
Solve the equation t=\frac{-24±4\sqrt{46}}{4} when ± is plus and when ± is minus.
x=\sqrt{\sqrt{46}-6} x=-\sqrt{\sqrt{46}-6}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.