Solve for b (complex solution)
\left\{\begin{matrix}b=\frac{300s+13a-3140}{3s}\text{, }&s\neq 0\\b\in \mathrm{C}\text{, }&a=\frac{3140}{13}\text{ and }s=0\end{matrix}\right.
Solve for a
a=\frac{3bs-300s+3140}{13}
Solve for b
\left\{\begin{matrix}b=\frac{300s+13a-3140}{3s}\text{, }&s\neq 0\\b\in \mathrm{R}\text{, }&a=\frac{3140}{13}\text{ and }s=0\end{matrix}\right.
Share
Copied to clipboard
26a+\left(600-6b\right)s=6280
Use the distributive property to multiply 200-2b by 3.
26a+600s-6bs=6280
Use the distributive property to multiply 600-6b by s.
600s-6bs=6280-26a
Subtract 26a from both sides.
-6bs=6280-26a-600s
Subtract 600s from both sides.
\left(-6s\right)b=6280-26a-600s
The equation is in standard form.
\frac{\left(-6s\right)b}{-6s}=\frac{6280-26a-600s}{-6s}
Divide both sides by -6s.
b=\frac{6280-26a-600s}{-6s}
Dividing by -6s undoes the multiplication by -6s.
b=\frac{13a-3140}{3s}+100
Divide 6280-26a-600s by -6s.
26a+\left(600-6b\right)s=6280
Use the distributive property to multiply 200-2b by 3.
26a+600s-6bs=6280
Use the distributive property to multiply 600-6b by s.
26a-6bs=6280-600s
Subtract 600s from both sides.
26a=6280-600s+6bs
Add 6bs to both sides.
26a=6bs-600s+6280
The equation is in standard form.
\frac{26a}{26}=\frac{6bs-600s+6280}{26}
Divide both sides by 26.
a=\frac{6bs-600s+6280}{26}
Dividing by 26 undoes the multiplication by 26.
a=\frac{3bs-300s+3140}{13}
Divide 6280-600s+6bs by 26.
26a+\left(600-6b\right)s=6280
Use the distributive property to multiply 200-2b by 3.
26a+600s-6bs=6280
Use the distributive property to multiply 600-6b by s.
600s-6bs=6280-26a
Subtract 26a from both sides.
-6bs=6280-26a-600s
Subtract 600s from both sides.
\left(-6s\right)b=6280-26a-600s
The equation is in standard form.
\frac{\left(-6s\right)b}{-6s}=\frac{6280-26a-600s}{-6s}
Divide both sides by -6s.
b=\frac{6280-26a-600s}{-6s}
Dividing by -6s undoes the multiplication by -6s.
b=\frac{13a-3140}{3s}+100
Divide 6280-26a-600s by -6s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}