Solve for a
a=\frac{50-5b}{43}
Solve for b
b=-\frac{43a}{5}+10
Share
Copied to clipboard
26a+700-70b=628a
Use the distributive property to multiply 20-2b by 35.
26a+700-70b-628a=0
Subtract 628a from both sides.
-602a+700-70b=0
Combine 26a and -628a to get -602a.
-602a-70b=-700
Subtract 700 from both sides. Anything subtracted from zero gives its negation.
-602a=-700+70b
Add 70b to both sides.
-602a=70b-700
The equation is in standard form.
\frac{-602a}{-602}=\frac{70b-700}{-602}
Divide both sides by -602.
a=\frac{70b-700}{-602}
Dividing by -602 undoes the multiplication by -602.
a=\frac{50-5b}{43}
Divide -700+70b by -602.
26a+700-70b=628a
Use the distributive property to multiply 20-2b by 35.
700-70b=628a-26a
Subtract 26a from both sides.
700-70b=602a
Combine 628a and -26a to get 602a.
-70b=602a-700
Subtract 700 from both sides.
\frac{-70b}{-70}=\frac{602a-700}{-70}
Divide both sides by -70.
b=\frac{602a-700}{-70}
Dividing by -70 undoes the multiplication by -70.
b=-\frac{43a}{5}+10
Divide 602a-700 by -70.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}