Evaluate
\frac{26}{15}\approx 1.733333333
Factor
\frac{2 \cdot 13}{3 \cdot 5} = 1\frac{11}{15} = 1.7333333333333334
Share
Copied to clipboard
\begin{array}{l}\phantom{15)}\phantom{1}\\15\overline{)26}\\\end{array}
Use the 1^{st} digit 2 from dividend 26
\begin{array}{l}\phantom{15)}0\phantom{2}\\15\overline{)26}\\\end{array}
Since 2 is less than 15, use the next digit 6 from dividend 26 and add 0 to the quotient
\begin{array}{l}\phantom{15)}0\phantom{3}\\15\overline{)26}\\\end{array}
Use the 2^{nd} digit 6 from dividend 26
\begin{array}{l}\phantom{15)}01\phantom{4}\\15\overline{)26}\\\phantom{15)}\underline{\phantom{}15\phantom{}}\\\phantom{15)}11\\\end{array}
Find closest multiple of 15 to 26. We see that 1 \times 15 = 15 is the nearest. Now subtract 15 from 26 to get reminder 11. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }11
Since 11 is less than 15, stop the division. The reminder is 11. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}