Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

676=x^{2}+\left(x+14\right)^{2}
Calculate 26 to the power of 2 and get 676.
676=x^{2}+x^{2}+28x+196
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+14\right)^{2}.
676=2x^{2}+28x+196
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+28x+196=676
Swap sides so that all variable terms are on the left hand side.
2x^{2}+28x+196-676=0
Subtract 676 from both sides.
2x^{2}+28x-480=0
Subtract 676 from 196 to get -480.
x^{2}+14x-240=0
Divide both sides by 2.
a+b=14 ab=1\left(-240\right)=-240
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-240. To find a and b, set up a system to be solved.
-1,240 -2,120 -3,80 -4,60 -5,48 -6,40 -8,30 -10,24 -12,20 -15,16
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -240.
-1+240=239 -2+120=118 -3+80=77 -4+60=56 -5+48=43 -6+40=34 -8+30=22 -10+24=14 -12+20=8 -15+16=1
Calculate the sum for each pair.
a=-10 b=24
The solution is the pair that gives sum 14.
\left(x^{2}-10x\right)+\left(24x-240\right)
Rewrite x^{2}+14x-240 as \left(x^{2}-10x\right)+\left(24x-240\right).
x\left(x-10\right)+24\left(x-10\right)
Factor out x in the first and 24 in the second group.
\left(x-10\right)\left(x+24\right)
Factor out common term x-10 by using distributive property.
x=10 x=-24
To find equation solutions, solve x-10=0 and x+24=0.
676=x^{2}+\left(x+14\right)^{2}
Calculate 26 to the power of 2 and get 676.
676=x^{2}+x^{2}+28x+196
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+14\right)^{2}.
676=2x^{2}+28x+196
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+28x+196=676
Swap sides so that all variable terms are on the left hand side.
2x^{2}+28x+196-676=0
Subtract 676 from both sides.
2x^{2}+28x-480=0
Subtract 676 from 196 to get -480.
x=\frac{-28±\sqrt{28^{2}-4\times 2\left(-480\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 28 for b, and -480 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-28±\sqrt{784-4\times 2\left(-480\right)}}{2\times 2}
Square 28.
x=\frac{-28±\sqrt{784-8\left(-480\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-28±\sqrt{784+3840}}{2\times 2}
Multiply -8 times -480.
x=\frac{-28±\sqrt{4624}}{2\times 2}
Add 784 to 3840.
x=\frac{-28±68}{2\times 2}
Take the square root of 4624.
x=\frac{-28±68}{4}
Multiply 2 times 2.
x=\frac{40}{4}
Now solve the equation x=\frac{-28±68}{4} when ± is plus. Add -28 to 68.
x=10
Divide 40 by 4.
x=-\frac{96}{4}
Now solve the equation x=\frac{-28±68}{4} when ± is minus. Subtract 68 from -28.
x=-24
Divide -96 by 4.
x=10 x=-24
The equation is now solved.
676=x^{2}+\left(x+14\right)^{2}
Calculate 26 to the power of 2 and get 676.
676=x^{2}+x^{2}+28x+196
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+14\right)^{2}.
676=2x^{2}+28x+196
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+28x+196=676
Swap sides so that all variable terms are on the left hand side.
2x^{2}+28x=676-196
Subtract 196 from both sides.
2x^{2}+28x=480
Subtract 196 from 676 to get 480.
\frac{2x^{2}+28x}{2}=\frac{480}{2}
Divide both sides by 2.
x^{2}+\frac{28}{2}x=\frac{480}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+14x=\frac{480}{2}
Divide 28 by 2.
x^{2}+14x=240
Divide 480 by 2.
x^{2}+14x+7^{2}=240+7^{2}
Divide 14, the coefficient of the x term, by 2 to get 7. Then add the square of 7 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+14x+49=240+49
Square 7.
x^{2}+14x+49=289
Add 240 to 49.
\left(x+7\right)^{2}=289
Factor x^{2}+14x+49. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+7\right)^{2}}=\sqrt{289}
Take the square root of both sides of the equation.
x+7=17 x+7=-17
Simplify.
x=10 x=-24
Subtract 7 from both sides of the equation.