Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(25x\right)^{2}=\left(\sqrt{49x^{2}+4.8^{2}}\right)^{2}
Square both sides of the equation.
25^{2}x^{2}=\left(\sqrt{49x^{2}+4.8^{2}}\right)^{2}
Expand \left(25x\right)^{2}.
625x^{2}=\left(\sqrt{49x^{2}+4.8^{2}}\right)^{2}
Calculate 25 to the power of 2 and get 625.
625x^{2}=\left(\sqrt{49x^{2}+23.04}\right)^{2}
Calculate 4.8 to the power of 2 and get 23.04.
625x^{2}=49x^{2}+23.04
Calculate \sqrt{49x^{2}+23.04} to the power of 2 and get 49x^{2}+23.04.
625x^{2}-49x^{2}=23.04
Subtract 49x^{2} from both sides.
576x^{2}=23.04
Combine 625x^{2} and -49x^{2} to get 576x^{2}.
576x^{2}-23.04=0
Subtract 23.04 from both sides.
\left(24x-\frac{24}{5}\right)\left(24x+\frac{24}{5}\right)=0
Consider 576x^{2}-23.04. Rewrite 576x^{2}-23.04 as \left(24x\right)^{2}-\left(\frac{24}{5}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{1}{5} x=-\frac{1}{5}
To find equation solutions, solve 24x-\frac{24}{5}=0 and 24x+\frac{24}{5}=0.
25\times \frac{1}{5}=\sqrt{49\times \left(\frac{1}{5}\right)^{2}+4.8^{2}}
Substitute \frac{1}{5} for x in the equation 25x=\sqrt{49x^{2}+4.8^{2}}.
5=5
Simplify. The value x=\frac{1}{5} satisfies the equation.
25\left(-\frac{1}{5}\right)=\sqrt{49\left(-\frac{1}{5}\right)^{2}+4.8^{2}}
Substitute -\frac{1}{5} for x in the equation 25x=\sqrt{49x^{2}+4.8^{2}}.
-5=5
Simplify. The value x=-\frac{1}{5} does not satisfy the equation because the left and the right hand side have opposite signs.
x=\frac{1}{5}
Equation 25x=\sqrt{49x^{2}+23.04} has a unique solution.