Solve for x (complex solution)
x=-\frac{\sqrt{4085}i}{5}\approx -0-12.782800945i
x=\frac{\sqrt{4085}i}{5}\approx 12.782800945i
Graph
Share
Copied to clipboard
2591-x\left(-15\right)x=140
Subtract 1 from 1 to get 0.
2591-x^{2}\left(-15\right)=140
Multiply x and x to get x^{2}.
2591+15x^{2}=140
Multiply -1 and -15 to get 15.
15x^{2}=140-2591
Subtract 2591 from both sides.
15x^{2}=-2451
Subtract 2591 from 140 to get -2451.
x^{2}=\frac{-2451}{15}
Divide both sides by 15.
x^{2}=-\frac{817}{5}
Reduce the fraction \frac{-2451}{15} to lowest terms by extracting and canceling out 3.
x=\frac{\sqrt{4085}i}{5} x=-\frac{\sqrt{4085}i}{5}
The equation is now solved.
2591-x\left(-15\right)x=140
Subtract 1 from 1 to get 0.
2591-x^{2}\left(-15\right)=140
Multiply x and x to get x^{2}.
2591-x^{2}\left(-15\right)-140=0
Subtract 140 from both sides.
2591+15x^{2}-140=0
Multiply -1 and -15 to get 15.
2451+15x^{2}=0
Subtract 140 from 2591 to get 2451.
15x^{2}+2451=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 15\times 2451}}{2\times 15}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 15 for a, 0 for b, and 2451 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 15\times 2451}}{2\times 15}
Square 0.
x=\frac{0±\sqrt{-60\times 2451}}{2\times 15}
Multiply -4 times 15.
x=\frac{0±\sqrt{-147060}}{2\times 15}
Multiply -60 times 2451.
x=\frac{0±6\sqrt{4085}i}{2\times 15}
Take the square root of -147060.
x=\frac{0±6\sqrt{4085}i}{30}
Multiply 2 times 15.
x=\frac{\sqrt{4085}i}{5}
Now solve the equation x=\frac{0±6\sqrt{4085}i}{30} when ± is plus.
x=-\frac{\sqrt{4085}i}{5}
Now solve the equation x=\frac{0±6\sqrt{4085}i}{30} when ± is minus.
x=\frac{\sqrt{4085}i}{5} x=-\frac{\sqrt{4085}i}{5}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}