Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

2591-x\left(-15\right)x=140
Subtract 1 from 1 to get 0.
2591-x^{2}\left(-15\right)=140
Multiply x and x to get x^{2}.
2591+15x^{2}=140
Multiply -1 and -15 to get 15.
15x^{2}=140-2591
Subtract 2591 from both sides.
15x^{2}=-2451
Subtract 2591 from 140 to get -2451.
x^{2}=\frac{-2451}{15}
Divide both sides by 15.
x^{2}=-\frac{817}{5}
Reduce the fraction \frac{-2451}{15} to lowest terms by extracting and canceling out 3.
x=\frac{\sqrt{4085}i}{5} x=-\frac{\sqrt{4085}i}{5}
The equation is now solved.
2591-x\left(-15\right)x=140
Subtract 1 from 1 to get 0.
2591-x^{2}\left(-15\right)=140
Multiply x and x to get x^{2}.
2591-x^{2}\left(-15\right)-140=0
Subtract 140 from both sides.
2591+15x^{2}-140=0
Multiply -1 and -15 to get 15.
2451+15x^{2}=0
Subtract 140 from 2591 to get 2451.
15x^{2}+2451=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 15\times 2451}}{2\times 15}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 15 for a, 0 for b, and 2451 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 15\times 2451}}{2\times 15}
Square 0.
x=\frac{0±\sqrt{-60\times 2451}}{2\times 15}
Multiply -4 times 15.
x=\frac{0±\sqrt{-147060}}{2\times 15}
Multiply -60 times 2451.
x=\frac{0±6\sqrt{4085}i}{2\times 15}
Take the square root of -147060.
x=\frac{0±6\sqrt{4085}i}{30}
Multiply 2 times 15.
x=\frac{\sqrt{4085}i}{5}
Now solve the equation x=\frac{0±6\sqrt{4085}i}{30} when ± is plus.
x=-\frac{\sqrt{4085}i}{5}
Now solve the equation x=\frac{0±6\sqrt{4085}i}{30} when ± is minus.
x=\frac{\sqrt{4085}i}{5} x=-\frac{\sqrt{4085}i}{5}
The equation is now solved.