Evaluate
\frac{259}{101}\approx 2.564356436
Factor
\frac{7 \cdot 37}{101} = 2\frac{57}{101} = 2.5643564356435644
Share
Copied to clipboard
\begin{array}{l}\phantom{101)}\phantom{1}\\101\overline{)259}\\\end{array}
Use the 1^{st} digit 2 from dividend 259
\begin{array}{l}\phantom{101)}0\phantom{2}\\101\overline{)259}\\\end{array}
Since 2 is less than 101, use the next digit 5 from dividend 259 and add 0 to the quotient
\begin{array}{l}\phantom{101)}0\phantom{3}\\101\overline{)259}\\\end{array}
Use the 2^{nd} digit 5 from dividend 259
\begin{array}{l}\phantom{101)}00\phantom{4}\\101\overline{)259}\\\end{array}
Since 25 is less than 101, use the next digit 9 from dividend 259 and add 0 to the quotient
\begin{array}{l}\phantom{101)}00\phantom{5}\\101\overline{)259}\\\end{array}
Use the 3^{rd} digit 9 from dividend 259
\begin{array}{l}\phantom{101)}002\phantom{6}\\101\overline{)259}\\\phantom{101)}\underline{\phantom{}202\phantom{}}\\\phantom{101)9}57\\\end{array}
Find closest multiple of 101 to 259. We see that 2 \times 101 = 202 is the nearest. Now subtract 202 from 259 to get reminder 57. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }57
Since 57 is less than 101, stop the division. The reminder is 57. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}