Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\begin{array}{c}\phantom{\times}258456\\\underline{\times\phantom{}358213}\\\end{array}
First line up the numbers vertically and match the places from the right like this.
\begin{array}{c}\phantom{\times}258456\\\underline{\times\phantom{}358213}\\\phantom{\times}775368\\\end{array}
Now multiply the first number with the 1^{st} digit in 2^{nd} number to get intermediate results. That is Multiply 258456 with 3. Write the result 775368 at the end leaving 0 spaces to the right like this.
\begin{array}{c}\phantom{\times}258456\\\underline{\times\phantom{}358213}\\\phantom{\times}775368\\\phantom{\times}258456\phantom{9}\\\end{array}
Now multiply the first number with the 2^{nd} digit in 2^{nd} number to get intermediate results. That is Multiply 258456 with 1. Write the result 258456 at the end leaving 1 spaces to the right like this.
\begin{array}{c}\phantom{\times}258456\\\underline{\times\phantom{}358213}\\\phantom{\times}775368\\\phantom{\times}258456\phantom{9}\\\phantom{\times}516912\phantom{99}\\\end{array}
Now multiply the first number with the 3^{rd} digit in 2^{nd} number to get intermediate results. That is Multiply 258456 with 2. Write the result 516912 at the end leaving 2 spaces to the right like this.
\begin{array}{c}\phantom{\times}258456\\\underline{\times\phantom{}358213}\\\phantom{\times}775368\\\phantom{\times}258456\phantom{9}\\\phantom{\times}516912\phantom{99}\\\phantom{\times}2067648\phantom{999}\\\end{array}
Now multiply the first number with the 4^{th} digit in 2^{nd} number to get intermediate results. That is Multiply 258456 with 8. Write the result 2067648 at the end leaving 3 spaces to the right like this.
\begin{array}{c}\phantom{\times}258456\\\underline{\times\phantom{}358213}\\\phantom{\times}775368\\\phantom{\times}258456\phantom{9}\\\phantom{\times}516912\phantom{99}\\\phantom{\times}2067648\phantom{999}\\\phantom{\times}1292280\phantom{9999}\\\end{array}
Now multiply the first number with the 5^{th} digit in 2^{nd} number to get intermediate results. That is Multiply 258456 with 5. Write the result 1292280 at the end leaving 4 spaces to the right like this.
\begin{array}{c}\phantom{\times}258456\\\underline{\times\phantom{}358213}\\\phantom{\times}775368\\\phantom{\times}258456\phantom{9}\\\phantom{\times}516912\phantom{99}\\\phantom{\times}2067648\phantom{999}\\\phantom{\times}1292280\phantom{9999}\\\underline{\phantom{\times}775368\phantom{99999}}\\\end{array}
Now multiply the first number with the 6^{th} digit in 2^{nd} number to get intermediate results. That is Multiply 258456 with 3. Write the result 775368 at the end leaving 5 spaces to the right like this.
\begin{array}{c}\phantom{\times}258456\\\underline{\times\phantom{}358213}\\\phantom{\times}775368\\\phantom{\times}258456\phantom{9}\\\phantom{\times}516912\phantom{99}\\\phantom{\times}2067648\phantom{999}\\\phantom{\times}1292280\phantom{9999}\\\underline{\phantom{\times}775368\phantom{99999}}\\\phantom{\times}-1906981384\end{array}
Now add the intermediate results to get final answer.