Evaluate
\frac{258154953}{196809808}\approx 1.311697601
Factor
\frac{3 \cdot 7 \cdot 67 \cdot 183479}{2 ^ {4} \cdot 13 \cdot 37 \cdot 107 \cdot 239} = 1\frac{61345145}{196809808} = 1.31169760096509
Share
Copied to clipboard
\begin{array}{l}\phantom{196809808)}\phantom{1}\\196809808\overline{)258154953}\\\end{array}
Use the 1^{st} digit 2 from dividend 258154953
\begin{array}{l}\phantom{196809808)}0\phantom{2}\\196809808\overline{)258154953}\\\end{array}
Since 2 is less than 196809808, use the next digit 5 from dividend 258154953 and add 0 to the quotient
\begin{array}{l}\phantom{196809808)}0\phantom{3}\\196809808\overline{)258154953}\\\end{array}
Use the 2^{nd} digit 5 from dividend 258154953
\begin{array}{l}\phantom{196809808)}00\phantom{4}\\196809808\overline{)258154953}\\\end{array}
Since 25 is less than 196809808, use the next digit 8 from dividend 258154953 and add 0 to the quotient
\begin{array}{l}\phantom{196809808)}00\phantom{5}\\196809808\overline{)258154953}\\\end{array}
Use the 3^{rd} digit 8 from dividend 258154953
\begin{array}{l}\phantom{196809808)}000\phantom{6}\\196809808\overline{)258154953}\\\end{array}
Since 258 is less than 196809808, use the next digit 1 from dividend 258154953 and add 0 to the quotient
\begin{array}{l}\phantom{196809808)}000\phantom{7}\\196809808\overline{)258154953}\\\end{array}
Use the 4^{th} digit 1 from dividend 258154953
\begin{array}{l}\phantom{196809808)}0000\phantom{8}\\196809808\overline{)258154953}\\\end{array}
Since 2581 is less than 196809808, use the next digit 5 from dividend 258154953 and add 0 to the quotient
\begin{array}{l}\phantom{196809808)}0000\phantom{9}\\196809808\overline{)258154953}\\\end{array}
Use the 5^{th} digit 5 from dividend 258154953
\begin{array}{l}\phantom{196809808)}00000\phantom{10}\\196809808\overline{)258154953}\\\end{array}
Since 25815 is less than 196809808, use the next digit 4 from dividend 258154953 and add 0 to the quotient
\begin{array}{l}\phantom{196809808)}00000\phantom{11}\\196809808\overline{)258154953}\\\end{array}
Use the 6^{th} digit 4 from dividend 258154953
\begin{array}{l}\phantom{196809808)}000000\phantom{12}\\196809808\overline{)258154953}\\\end{array}
Since 258154 is less than 196809808, use the next digit 9 from dividend 258154953 and add 0 to the quotient
\begin{array}{l}\phantom{196809808)}000000\phantom{13}\\196809808\overline{)258154953}\\\end{array}
Use the 7^{th} digit 9 from dividend 258154953
\begin{array}{l}\phantom{196809808)}0000000\phantom{14}\\196809808\overline{)258154953}\\\end{array}
Since 2581549 is less than 196809808, use the next digit 5 from dividend 258154953 and add 0 to the quotient
\begin{array}{l}\phantom{196809808)}0000000\phantom{15}\\196809808\overline{)258154953}\\\end{array}
Use the 8^{th} digit 5 from dividend 258154953
\begin{array}{l}\phantom{196809808)}00000000\phantom{16}\\196809808\overline{)258154953}\\\end{array}
Since 25815495 is less than 196809808, use the next digit 3 from dividend 258154953 and add 0 to the quotient
\begin{array}{l}\phantom{196809808)}00000000\phantom{17}\\196809808\overline{)258154953}\\\end{array}
Use the 9^{th} digit 3 from dividend 258154953
\begin{array}{l}\phantom{196809808)}000000001\phantom{18}\\196809808\overline{)258154953}\\\phantom{196809808)}\underline{\phantom{}196809808\phantom{}}\\\phantom{196809808)9}61345145\\\end{array}
Find closest multiple of 196809808 to 258154953. We see that 1 \times 196809808 = 196809808 is the nearest. Now subtract 196809808 from 258154953 to get reminder 61345145. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }61345145
Since 61345145 is less than 196809808, stop the division. The reminder is 61345145. The topmost line 000000001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}