258 \times \frac { x } { 10 } \quad \geq 215 \times ( 1 + 14 \% )
Solve for x
x\geq \frac{19}{2}
Graph
Share
Copied to clipboard
2580x\geq 21500\left(1+\frac{14}{100}\right)
Multiply both sides of the equation by 100, the least common multiple of 10,100. Since 100 is positive, the inequality direction remains the same.
2580x\geq 21500\left(1+\frac{7}{50}\right)
Reduce the fraction \frac{14}{100} to lowest terms by extracting and canceling out 2.
2580x\geq 21500\left(\frac{50}{50}+\frac{7}{50}\right)
Convert 1 to fraction \frac{50}{50}.
2580x\geq 21500\times \frac{50+7}{50}
Since \frac{50}{50} and \frac{7}{50} have the same denominator, add them by adding their numerators.
2580x\geq 21500\times \frac{57}{50}
Add 50 and 7 to get 57.
2580x\geq \frac{21500\times 57}{50}
Express 21500\times \frac{57}{50} as a single fraction.
2580x\geq \frac{1225500}{50}
Multiply 21500 and 57 to get 1225500.
2580x\geq 24510
Divide 1225500 by 50 to get 24510.
x\geq \frac{24510}{2580}
Divide both sides by 2580. Since 2580 is positive, the inequality direction remains the same.
x\geq \frac{19}{2}
Reduce the fraction \frac{24510}{2580} to lowest terms by extracting and canceling out 1290.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}