Evaluate
\frac{257}{34}\approx 7.558823529
Factor
\frac{257}{2 \cdot 17} = 7\frac{19}{34} = 7.5588235294117645
Share
Copied to clipboard
\begin{array}{l}\phantom{34)}\phantom{1}\\34\overline{)257}\\\end{array}
Use the 1^{st} digit 2 from dividend 257
\begin{array}{l}\phantom{34)}0\phantom{2}\\34\overline{)257}\\\end{array}
Since 2 is less than 34, use the next digit 5 from dividend 257 and add 0 to the quotient
\begin{array}{l}\phantom{34)}0\phantom{3}\\34\overline{)257}\\\end{array}
Use the 2^{nd} digit 5 from dividend 257
\begin{array}{l}\phantom{34)}00\phantom{4}\\34\overline{)257}\\\end{array}
Since 25 is less than 34, use the next digit 7 from dividend 257 and add 0 to the quotient
\begin{array}{l}\phantom{34)}00\phantom{5}\\34\overline{)257}\\\end{array}
Use the 3^{rd} digit 7 from dividend 257
\begin{array}{l}\phantom{34)}007\phantom{6}\\34\overline{)257}\\\phantom{34)}\underline{\phantom{}238\phantom{}}\\\phantom{34)9}19\\\end{array}
Find closest multiple of 34 to 257. We see that 7 \times 34 = 238 is the nearest. Now subtract 238 from 257 to get reminder 19. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }19
Since 19 is less than 34, stop the division. The reminder is 19. The topmost line 007 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}