Evaluate
\frac{256789}{3795}\approx 67.665085639
Factor
\frac{13 \cdot 19753}{3 \cdot 5 \cdot 11 \cdot 23} = 67\frac{2524}{3795} = 67.66508563899868
Share
Copied to clipboard
\begin{array}{l}\phantom{3795)}\phantom{1}\\3795\overline{)256789}\\\end{array}
Use the 1^{st} digit 2 from dividend 256789
\begin{array}{l}\phantom{3795)}0\phantom{2}\\3795\overline{)256789}\\\end{array}
Since 2 is less than 3795, use the next digit 5 from dividend 256789 and add 0 to the quotient
\begin{array}{l}\phantom{3795)}0\phantom{3}\\3795\overline{)256789}\\\end{array}
Use the 2^{nd} digit 5 from dividend 256789
\begin{array}{l}\phantom{3795)}00\phantom{4}\\3795\overline{)256789}\\\end{array}
Since 25 is less than 3795, use the next digit 6 from dividend 256789 and add 0 to the quotient
\begin{array}{l}\phantom{3795)}00\phantom{5}\\3795\overline{)256789}\\\end{array}
Use the 3^{rd} digit 6 from dividend 256789
\begin{array}{l}\phantom{3795)}000\phantom{6}\\3795\overline{)256789}\\\end{array}
Since 256 is less than 3795, use the next digit 7 from dividend 256789 and add 0 to the quotient
\begin{array}{l}\phantom{3795)}000\phantom{7}\\3795\overline{)256789}\\\end{array}
Use the 4^{th} digit 7 from dividend 256789
\begin{array}{l}\phantom{3795)}0000\phantom{8}\\3795\overline{)256789}\\\end{array}
Since 2567 is less than 3795, use the next digit 8 from dividend 256789 and add 0 to the quotient
\begin{array}{l}\phantom{3795)}0000\phantom{9}\\3795\overline{)256789}\\\end{array}
Use the 5^{th} digit 8 from dividend 256789
\begin{array}{l}\phantom{3795)}00006\phantom{10}\\3795\overline{)256789}\\\phantom{3795)}\underline{\phantom{}22770\phantom{9}}\\\phantom{3795)9}2908\\\end{array}
Find closest multiple of 3795 to 25678. We see that 6 \times 3795 = 22770 is the nearest. Now subtract 22770 from 25678 to get reminder 2908. Add 6 to quotient.
\begin{array}{l}\phantom{3795)}00006\phantom{11}\\3795\overline{)256789}\\\phantom{3795)}\underline{\phantom{}22770\phantom{9}}\\\phantom{3795)9}29089\\\end{array}
Use the 6^{th} digit 9 from dividend 256789
\begin{array}{l}\phantom{3795)}000067\phantom{12}\\3795\overline{)256789}\\\phantom{3795)}\underline{\phantom{}22770\phantom{9}}\\\phantom{3795)9}29089\\\phantom{3795)}\underline{\phantom{9}26565\phantom{}}\\\phantom{3795)99}2524\\\end{array}
Find closest multiple of 3795 to 29089. We see that 7 \times 3795 = 26565 is the nearest. Now subtract 26565 from 29089 to get reminder 2524. Add 7 to quotient.
\text{Quotient: }67 \text{Reminder: }2524
Since 2524 is less than 3795, stop the division. The reminder is 2524. The topmost line 000067 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 67.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}