Solve for x (complex solution)
x=3+\sqrt{7}i\approx 3+2.645751311i
x=-\sqrt{7}i+3\approx 3-2.645751311i
Graph
Share
Copied to clipboard
96x-16x^{2}=256
Swap sides so that all variable terms are on the left hand side.
96x-16x^{2}-256=0
Subtract 256 from both sides.
-16x^{2}+96x-256=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-96±\sqrt{96^{2}-4\left(-16\right)\left(-256\right)}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 96 for b, and -256 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-96±\sqrt{9216-4\left(-16\right)\left(-256\right)}}{2\left(-16\right)}
Square 96.
x=\frac{-96±\sqrt{9216+64\left(-256\right)}}{2\left(-16\right)}
Multiply -4 times -16.
x=\frac{-96±\sqrt{9216-16384}}{2\left(-16\right)}
Multiply 64 times -256.
x=\frac{-96±\sqrt{-7168}}{2\left(-16\right)}
Add 9216 to -16384.
x=\frac{-96±32\sqrt{7}i}{2\left(-16\right)}
Take the square root of -7168.
x=\frac{-96±32\sqrt{7}i}{-32}
Multiply 2 times -16.
x=\frac{-96+32\sqrt{7}i}{-32}
Now solve the equation x=\frac{-96±32\sqrt{7}i}{-32} when ± is plus. Add -96 to 32i\sqrt{7}.
x=-\sqrt{7}i+3
Divide -96+32i\sqrt{7} by -32.
x=\frac{-32\sqrt{7}i-96}{-32}
Now solve the equation x=\frac{-96±32\sqrt{7}i}{-32} when ± is minus. Subtract 32i\sqrt{7} from -96.
x=3+\sqrt{7}i
Divide -96-32i\sqrt{7} by -32.
x=-\sqrt{7}i+3 x=3+\sqrt{7}i
The equation is now solved.
96x-16x^{2}=256
Swap sides so that all variable terms are on the left hand side.
-16x^{2}+96x=256
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-16x^{2}+96x}{-16}=\frac{256}{-16}
Divide both sides by -16.
x^{2}+\frac{96}{-16}x=\frac{256}{-16}
Dividing by -16 undoes the multiplication by -16.
x^{2}-6x=\frac{256}{-16}
Divide 96 by -16.
x^{2}-6x=-16
Divide 256 by -16.
x^{2}-6x+\left(-3\right)^{2}=-16+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=-16+9
Square -3.
x^{2}-6x+9=-7
Add -16 to 9.
\left(x-3\right)^{2}=-7
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{-7}
Take the square root of both sides of the equation.
x-3=\sqrt{7}i x-3=-\sqrt{7}i
Simplify.
x=3+\sqrt{7}i x=-\sqrt{7}i+3
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}