Solve for n
n=8m^{2}+\frac{1}{32}
Solve for m (complex solution)
m=-\frac{\sqrt{32n-1}}{16}
m=\frac{\sqrt{32n-1}}{16}
Solve for m
m=\frac{\sqrt{32n-1}}{16}
m=-\frac{\sqrt{32n-1}}{16}\text{, }n\geq \frac{1}{32}
Share
Copied to clipboard
-32n+1=-256m^{2}
Subtract 256m^{2} from both sides. Anything subtracted from zero gives its negation.
-32n=-256m^{2}-1
Subtract 1 from both sides.
\frac{-32n}{-32}=\frac{-256m^{2}-1}{-32}
Divide both sides by -32.
n=\frac{-256m^{2}-1}{-32}
Dividing by -32 undoes the multiplication by -32.
n=8m^{2}+\frac{1}{32}
Divide -256m^{2}-1 by -32.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}