Evaluate
\frac{128}{5}=25.6
Factor
\frac{2 ^ {7}}{5} = 25\frac{3}{5} = 25.6
Share
Copied to clipboard
\begin{array}{l}\phantom{10)}\phantom{1}\\10\overline{)256}\\\end{array}
Use the 1^{st} digit 2 from dividend 256
\begin{array}{l}\phantom{10)}0\phantom{2}\\10\overline{)256}\\\end{array}
Since 2 is less than 10, use the next digit 5 from dividend 256 and add 0 to the quotient
\begin{array}{l}\phantom{10)}0\phantom{3}\\10\overline{)256}\\\end{array}
Use the 2^{nd} digit 5 from dividend 256
\begin{array}{l}\phantom{10)}02\phantom{4}\\10\overline{)256}\\\phantom{10)}\underline{\phantom{}20\phantom{9}}\\\phantom{10)9}5\\\end{array}
Find closest multiple of 10 to 25. We see that 2 \times 10 = 20 is the nearest. Now subtract 20 from 25 to get reminder 5. Add 2 to quotient.
\begin{array}{l}\phantom{10)}02\phantom{5}\\10\overline{)256}\\\phantom{10)}\underline{\phantom{}20\phantom{9}}\\\phantom{10)9}56\\\end{array}
Use the 3^{rd} digit 6 from dividend 256
\begin{array}{l}\phantom{10)}025\phantom{6}\\10\overline{)256}\\\phantom{10)}\underline{\phantom{}20\phantom{9}}\\\phantom{10)9}56\\\phantom{10)}\underline{\phantom{9}50\phantom{}}\\\phantom{10)99}6\\\end{array}
Find closest multiple of 10 to 56. We see that 5 \times 10 = 50 is the nearest. Now subtract 50 from 56 to get reminder 6. Add 5 to quotient.
\text{Quotient: }25 \text{Reminder: }6
Since 6 is less than 10, stop the division. The reminder is 6. The topmost line 025 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}