Evaluate
16
Factor
2^{4}
Share
Copied to clipboard
\begin{array}{l}\phantom{16)}\phantom{1}\\16\overline{)256}\\\end{array}
Use the 1^{st} digit 2 from dividend 256
\begin{array}{l}\phantom{16)}0\phantom{2}\\16\overline{)256}\\\end{array}
Since 2 is less than 16, use the next digit 5 from dividend 256 and add 0 to the quotient
\begin{array}{l}\phantom{16)}0\phantom{3}\\16\overline{)256}\\\end{array}
Use the 2^{nd} digit 5 from dividend 256
\begin{array}{l}\phantom{16)}01\phantom{4}\\16\overline{)256}\\\phantom{16)}\underline{\phantom{}16\phantom{9}}\\\phantom{16)9}9\\\end{array}
Find closest multiple of 16 to 25. We see that 1 \times 16 = 16 is the nearest. Now subtract 16 from 25 to get reminder 9. Add 1 to quotient.
\begin{array}{l}\phantom{16)}01\phantom{5}\\16\overline{)256}\\\phantom{16)}\underline{\phantom{}16\phantom{9}}\\\phantom{16)9}96\\\end{array}
Use the 3^{rd} digit 6 from dividend 256
\begin{array}{l}\phantom{16)}016\phantom{6}\\16\overline{)256}\\\phantom{16)}\underline{\phantom{}16\phantom{9}}\\\phantom{16)9}96\\\phantom{16)}\underline{\phantom{9}96\phantom{}}\\\phantom{16)999}0\\\end{array}
Find closest multiple of 16 to 96. We see that 6 \times 16 = 96 is the nearest. Now subtract 96 from 96 to get reminder 0. Add 6 to quotient.
\text{Quotient: }16 \text{Reminder: }0
Since 0 is less than 16, stop the division. The reminder is 0. The topmost line 016 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}