Evaluate
17
Factor
17
Share
Copied to clipboard
\begin{array}{l}\phantom{15)}\phantom{1}\\15\overline{)255}\\\end{array}
Use the 1^{st} digit 2 from dividend 255
\begin{array}{l}\phantom{15)}0\phantom{2}\\15\overline{)255}\\\end{array}
Since 2 is less than 15, use the next digit 5 from dividend 255 and add 0 to the quotient
\begin{array}{l}\phantom{15)}0\phantom{3}\\15\overline{)255}\\\end{array}
Use the 2^{nd} digit 5 from dividend 255
\begin{array}{l}\phantom{15)}01\phantom{4}\\15\overline{)255}\\\phantom{15)}\underline{\phantom{}15\phantom{9}}\\\phantom{15)}10\\\end{array}
Find closest multiple of 15 to 25. We see that 1 \times 15 = 15 is the nearest. Now subtract 15 from 25 to get reminder 10. Add 1 to quotient.
\begin{array}{l}\phantom{15)}01\phantom{5}\\15\overline{)255}\\\phantom{15)}\underline{\phantom{}15\phantom{9}}\\\phantom{15)}105\\\end{array}
Use the 3^{rd} digit 5 from dividend 255
\begin{array}{l}\phantom{15)}017\phantom{6}\\15\overline{)255}\\\phantom{15)}\underline{\phantom{}15\phantom{9}}\\\phantom{15)}105\\\phantom{15)}\underline{\phantom{}105\phantom{}}\\\phantom{15)999}0\\\end{array}
Find closest multiple of 15 to 105. We see that 7 \times 15 = 105 is the nearest. Now subtract 105 from 105 to get reminder 0. Add 7 to quotient.
\text{Quotient: }17 \text{Reminder: }0
Since 0 is less than 15, stop the division. The reminder is 0. The topmost line 017 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 17.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}