255 = ( - 39,2 ) t + ( 0,5 \cdot 9,8 ) t ^ { 2 }
Solve for t
t=\frac{\sqrt{3334}}{7}+4\approx 12.248685733
t=-\frac{\sqrt{3334}}{7}+4\approx -4.248685733
Share
Copied to clipboard
255=-39,2t+4,9t^{2}
Multiply 0,5 and 9,8 to get 4,9.
-39,2t+4,9t^{2}=255
Swap sides so that all variable terms are on the left hand side.
-39,2t+4,9t^{2}-255=0
Subtract 255 from both sides.
4,9t^{2}-39,2t-255=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-39,2\right)±\sqrt{\left(-39,2\right)^{2}-4\times 4,9\left(-255\right)}}{2\times 4,9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4,9 for a, -39,2 for b, and -255 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-39,2\right)±\sqrt{1536,64-4\times 4,9\left(-255\right)}}{2\times 4,9}
Square -39,2 by squaring both the numerator and the denominator of the fraction.
t=\frac{-\left(-39,2\right)±\sqrt{1536,64-19,6\left(-255\right)}}{2\times 4,9}
Multiply -4 times 4,9.
t=\frac{-\left(-39,2\right)±\sqrt{1536,64+4998}}{2\times 4,9}
Multiply -19,6 times -255.
t=\frac{-\left(-39,2\right)±\sqrt{6534,64}}{2\times 4,9}
Add 1536,64 to 4998.
t=\frac{-\left(-39,2\right)±\frac{7\sqrt{3334}}{5}}{2\times 4,9}
Take the square root of 6534,64.
t=\frac{39,2±\frac{7\sqrt{3334}}{5}}{2\times 4,9}
The opposite of -39,2 is 39,2.
t=\frac{39,2±\frac{7\sqrt{3334}}{5}}{9,8}
Multiply 2 times 4,9.
t=\frac{7\sqrt{3334}+196}{5\times 9,8}
Now solve the equation t=\frac{39,2±\frac{7\sqrt{3334}}{5}}{9,8} when ± is plus. Add 39,2 to \frac{7\sqrt{3334}}{5}.
t=\frac{\sqrt{3334}}{7}+4
Divide \frac{196+7\sqrt{3334}}{5} by 9,8 by multiplying \frac{196+7\sqrt{3334}}{5} by the reciprocal of 9,8.
t=\frac{196-7\sqrt{3334}}{5\times 9,8}
Now solve the equation t=\frac{39,2±\frac{7\sqrt{3334}}{5}}{9,8} when ± is minus. Subtract \frac{7\sqrt{3334}}{5} from 39,2.
t=-\frac{\sqrt{3334}}{7}+4
Divide \frac{196-7\sqrt{3334}}{5} by 9,8 by multiplying \frac{196-7\sqrt{3334}}{5} by the reciprocal of 9,8.
t=\frac{\sqrt{3334}}{7}+4 t=-\frac{\sqrt{3334}}{7}+4
The equation is now solved.
255=-39,2t+4,9t^{2}
Multiply 0,5 and 9,8 to get 4,9.
-39,2t+4,9t^{2}=255
Swap sides so that all variable terms are on the left hand side.
4,9t^{2}-39,2t=255
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4,9t^{2}-39,2t}{4,9}=\frac{255}{4,9}
Divide both sides of the equation by 4,9, which is the same as multiplying both sides by the reciprocal of the fraction.
t^{2}+\left(-\frac{39,2}{4,9}\right)t=\frac{255}{4,9}
Dividing by 4,9 undoes the multiplication by 4,9.
t^{2}-8t=\frac{255}{4,9}
Divide -39,2 by 4,9 by multiplying -39,2 by the reciprocal of 4,9.
t^{2}-8t=\frac{2550}{49}
Divide 255 by 4,9 by multiplying 255 by the reciprocal of 4,9.
t^{2}-8t+\left(-4\right)^{2}=\frac{2550}{49}+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-8t+16=\frac{2550}{49}+16
Square -4.
t^{2}-8t+16=\frac{3334}{49}
Add \frac{2550}{49} to 16.
\left(t-4\right)^{2}=\frac{3334}{49}
Factor t^{2}-8t+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-4\right)^{2}}=\sqrt{\frac{3334}{49}}
Take the square root of both sides of the equation.
t-4=\frac{\sqrt{3334}}{7} t-4=-\frac{\sqrt{3334}}{7}
Simplify.
t=\frac{\sqrt{3334}}{7}+4 t=-\frac{\sqrt{3334}}{7}+4
Add 4 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}