Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

252x^{2}-205x=-13
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
252x^{2}-205x-\left(-13\right)=-13-\left(-13\right)
Add 13 to both sides of the equation.
252x^{2}-205x-\left(-13\right)=0
Subtracting -13 from itself leaves 0.
252x^{2}-205x+13=0
Subtract -13 from 0.
x=\frac{-\left(-205\right)±\sqrt{\left(-205\right)^{2}-4\times 252\times 13}}{2\times 252}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 252 for a, -205 for b, and 13 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-205\right)±\sqrt{42025-4\times 252\times 13}}{2\times 252}
Square -205.
x=\frac{-\left(-205\right)±\sqrt{42025-1008\times 13}}{2\times 252}
Multiply -4 times 252.
x=\frac{-\left(-205\right)±\sqrt{42025-13104}}{2\times 252}
Multiply -1008 times 13.
x=\frac{-\left(-205\right)±\sqrt{28921}}{2\times 252}
Add 42025 to -13104.
x=\frac{205±\sqrt{28921}}{2\times 252}
The opposite of -205 is 205.
x=\frac{205±\sqrt{28921}}{504}
Multiply 2 times 252.
x=\frac{\sqrt{28921}+205}{504}
Now solve the equation x=\frac{205±\sqrt{28921}}{504} when ± is plus. Add 205 to \sqrt{28921}.
x=\frac{205-\sqrt{28921}}{504}
Now solve the equation x=\frac{205±\sqrt{28921}}{504} when ± is minus. Subtract \sqrt{28921} from 205.
x=\frac{\sqrt{28921}+205}{504} x=\frac{205-\sqrt{28921}}{504}
The equation is now solved.
252x^{2}-205x=-13
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{252x^{2}-205x}{252}=-\frac{13}{252}
Divide both sides by 252.
x^{2}-\frac{205}{252}x=-\frac{13}{252}
Dividing by 252 undoes the multiplication by 252.
x^{2}-\frac{205}{252}x+\left(-\frac{205}{504}\right)^{2}=-\frac{13}{252}+\left(-\frac{205}{504}\right)^{2}
Divide -\frac{205}{252}, the coefficient of the x term, by 2 to get -\frac{205}{504}. Then add the square of -\frac{205}{504} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{205}{252}x+\frac{42025}{254016}=-\frac{13}{252}+\frac{42025}{254016}
Square -\frac{205}{504} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{205}{252}x+\frac{42025}{254016}=\frac{28921}{254016}
Add -\frac{13}{252} to \frac{42025}{254016} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{205}{504}\right)^{2}=\frac{28921}{254016}
Factor x^{2}-\frac{205}{252}x+\frac{42025}{254016}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{205}{504}\right)^{2}}=\sqrt{\frac{28921}{254016}}
Take the square root of both sides of the equation.
x-\frac{205}{504}=\frac{\sqrt{28921}}{504} x-\frac{205}{504}=-\frac{\sqrt{28921}}{504}
Simplify.
x=\frac{\sqrt{28921}+205}{504} x=\frac{205-\sqrt{28921}}{504}
Add \frac{205}{504} to both sides of the equation.