Solve for x
x=\frac{\sqrt{28921}+205}{504}\approx 0.744170146
x=\frac{205-\sqrt{28921}}{504}\approx 0.069321918
Graph
Share
Copied to clipboard
252x^{2}-205x=-13
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
252x^{2}-205x-\left(-13\right)=-13-\left(-13\right)
Add 13 to both sides of the equation.
252x^{2}-205x-\left(-13\right)=0
Subtracting -13 from itself leaves 0.
252x^{2}-205x+13=0
Subtract -13 from 0.
x=\frac{-\left(-205\right)±\sqrt{\left(-205\right)^{2}-4\times 252\times 13}}{2\times 252}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 252 for a, -205 for b, and 13 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-205\right)±\sqrt{42025-4\times 252\times 13}}{2\times 252}
Square -205.
x=\frac{-\left(-205\right)±\sqrt{42025-1008\times 13}}{2\times 252}
Multiply -4 times 252.
x=\frac{-\left(-205\right)±\sqrt{42025-13104}}{2\times 252}
Multiply -1008 times 13.
x=\frac{-\left(-205\right)±\sqrt{28921}}{2\times 252}
Add 42025 to -13104.
x=\frac{205±\sqrt{28921}}{2\times 252}
The opposite of -205 is 205.
x=\frac{205±\sqrt{28921}}{504}
Multiply 2 times 252.
x=\frac{\sqrt{28921}+205}{504}
Now solve the equation x=\frac{205±\sqrt{28921}}{504} when ± is plus. Add 205 to \sqrt{28921}.
x=\frac{205-\sqrt{28921}}{504}
Now solve the equation x=\frac{205±\sqrt{28921}}{504} when ± is minus. Subtract \sqrt{28921} from 205.
x=\frac{\sqrt{28921}+205}{504} x=\frac{205-\sqrt{28921}}{504}
The equation is now solved.
252x^{2}-205x=-13
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{252x^{2}-205x}{252}=-\frac{13}{252}
Divide both sides by 252.
x^{2}-\frac{205}{252}x=-\frac{13}{252}
Dividing by 252 undoes the multiplication by 252.
x^{2}-\frac{205}{252}x+\left(-\frac{205}{504}\right)^{2}=-\frac{13}{252}+\left(-\frac{205}{504}\right)^{2}
Divide -\frac{205}{252}, the coefficient of the x term, by 2 to get -\frac{205}{504}. Then add the square of -\frac{205}{504} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{205}{252}x+\frac{42025}{254016}=-\frac{13}{252}+\frac{42025}{254016}
Square -\frac{205}{504} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{205}{252}x+\frac{42025}{254016}=\frac{28921}{254016}
Add -\frac{13}{252} to \frac{42025}{254016} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{205}{504}\right)^{2}=\frac{28921}{254016}
Factor x^{2}-\frac{205}{252}x+\frac{42025}{254016}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{205}{504}\right)^{2}}=\sqrt{\frac{28921}{254016}}
Take the square root of both sides of the equation.
x-\frac{205}{504}=\frac{\sqrt{28921}}{504} x-\frac{205}{504}=-\frac{\sqrt{28921}}{504}
Simplify.
x=\frac{\sqrt{28921}+205}{504} x=\frac{205-\sqrt{28921}}{504}
Add \frac{205}{504} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}