Evaluate
\frac{251}{18}\approx 13.944444444
Factor
\frac{251}{2 \cdot 3 ^ {2}} = 13\frac{17}{18} = 13.944444444444445
Share
Copied to clipboard
\begin{array}{l}\phantom{18)}\phantom{1}\\18\overline{)251}\\\end{array}
Use the 1^{st} digit 2 from dividend 251
\begin{array}{l}\phantom{18)}0\phantom{2}\\18\overline{)251}\\\end{array}
Since 2 is less than 18, use the next digit 5 from dividend 251 and add 0 to the quotient
\begin{array}{l}\phantom{18)}0\phantom{3}\\18\overline{)251}\\\end{array}
Use the 2^{nd} digit 5 from dividend 251
\begin{array}{l}\phantom{18)}01\phantom{4}\\18\overline{)251}\\\phantom{18)}\underline{\phantom{}18\phantom{9}}\\\phantom{18)9}7\\\end{array}
Find closest multiple of 18 to 25. We see that 1 \times 18 = 18 is the nearest. Now subtract 18 from 25 to get reminder 7. Add 1 to quotient.
\begin{array}{l}\phantom{18)}01\phantom{5}\\18\overline{)251}\\\phantom{18)}\underline{\phantom{}18\phantom{9}}\\\phantom{18)9}71\\\end{array}
Use the 3^{rd} digit 1 from dividend 251
\begin{array}{l}\phantom{18)}013\phantom{6}\\18\overline{)251}\\\phantom{18)}\underline{\phantom{}18\phantom{9}}\\\phantom{18)9}71\\\phantom{18)}\underline{\phantom{9}54\phantom{}}\\\phantom{18)9}17\\\end{array}
Find closest multiple of 18 to 71. We see that 3 \times 18 = 54 is the nearest. Now subtract 54 from 71 to get reminder 17. Add 3 to quotient.
\text{Quotient: }13 \text{Reminder: }17
Since 17 is less than 18, stop the division. The reminder is 17. The topmost line 013 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}