Evaluate
\frac{12505}{3222}\approx 3.881129733
Factor
\frac{5 \cdot 41 \cdot 61}{2 \cdot 3 ^ {2} \cdot 179} = 3\frac{2839}{3222} = 3.8811297330850403
Share
Copied to clipboard
\begin{array}{l}\phantom{6444)}\phantom{1}\\6444\overline{)25010}\\\end{array}
Use the 1^{st} digit 2 from dividend 25010
\begin{array}{l}\phantom{6444)}0\phantom{2}\\6444\overline{)25010}\\\end{array}
Since 2 is less than 6444, use the next digit 5 from dividend 25010 and add 0 to the quotient
\begin{array}{l}\phantom{6444)}0\phantom{3}\\6444\overline{)25010}\\\end{array}
Use the 2^{nd} digit 5 from dividend 25010
\begin{array}{l}\phantom{6444)}00\phantom{4}\\6444\overline{)25010}\\\end{array}
Since 25 is less than 6444, use the next digit 0 from dividend 25010 and add 0 to the quotient
\begin{array}{l}\phantom{6444)}00\phantom{5}\\6444\overline{)25010}\\\end{array}
Use the 3^{rd} digit 0 from dividend 25010
\begin{array}{l}\phantom{6444)}000\phantom{6}\\6444\overline{)25010}\\\end{array}
Since 250 is less than 6444, use the next digit 1 from dividend 25010 and add 0 to the quotient
\begin{array}{l}\phantom{6444)}000\phantom{7}\\6444\overline{)25010}\\\end{array}
Use the 4^{th} digit 1 from dividend 25010
\begin{array}{l}\phantom{6444)}0000\phantom{8}\\6444\overline{)25010}\\\end{array}
Since 2501 is less than 6444, use the next digit 0 from dividend 25010 and add 0 to the quotient
\begin{array}{l}\phantom{6444)}0000\phantom{9}\\6444\overline{)25010}\\\end{array}
Use the 5^{th} digit 0 from dividend 25010
\begin{array}{l}\phantom{6444)}00003\phantom{10}\\6444\overline{)25010}\\\phantom{6444)}\underline{\phantom{}19332\phantom{}}\\\phantom{6444)9}5678\\\end{array}
Find closest multiple of 6444 to 25010. We see that 3 \times 6444 = 19332 is the nearest. Now subtract 19332 from 25010 to get reminder 5678. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }5678
Since 5678 is less than 6444, stop the division. The reminder is 5678. The topmost line 00003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}