Solve for x
x=\frac{4}{5}=0.8
x = -\frac{9}{5} = -1\frac{4}{5} = -1.8
Graph
Share
Copied to clipboard
2500x^{2}+2500x=3600
Use the distributive property to multiply 2500x by x+1.
2500x^{2}+2500x-3600=0
Subtract 3600 from both sides.
x=\frac{-2500±\sqrt{2500^{2}-4\times 2500\left(-3600\right)}}{2\times 2500}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2500 for a, 2500 for b, and -3600 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2500±\sqrt{6250000-4\times 2500\left(-3600\right)}}{2\times 2500}
Square 2500.
x=\frac{-2500±\sqrt{6250000-10000\left(-3600\right)}}{2\times 2500}
Multiply -4 times 2500.
x=\frac{-2500±\sqrt{6250000+36000000}}{2\times 2500}
Multiply -10000 times -3600.
x=\frac{-2500±\sqrt{42250000}}{2\times 2500}
Add 6250000 to 36000000.
x=\frac{-2500±6500}{2\times 2500}
Take the square root of 42250000.
x=\frac{-2500±6500}{5000}
Multiply 2 times 2500.
x=\frac{4000}{5000}
Now solve the equation x=\frac{-2500±6500}{5000} when ± is plus. Add -2500 to 6500.
x=\frac{4}{5}
Reduce the fraction \frac{4000}{5000} to lowest terms by extracting and canceling out 1000.
x=-\frac{9000}{5000}
Now solve the equation x=\frac{-2500±6500}{5000} when ± is minus. Subtract 6500 from -2500.
x=-\frac{9}{5}
Reduce the fraction \frac{-9000}{5000} to lowest terms by extracting and canceling out 1000.
x=\frac{4}{5} x=-\frac{9}{5}
The equation is now solved.
2500x^{2}+2500x=3600
Use the distributive property to multiply 2500x by x+1.
\frac{2500x^{2}+2500x}{2500}=\frac{3600}{2500}
Divide both sides by 2500.
x^{2}+\frac{2500}{2500}x=\frac{3600}{2500}
Dividing by 2500 undoes the multiplication by 2500.
x^{2}+x=\frac{3600}{2500}
Divide 2500 by 2500.
x^{2}+x=\frac{36}{25}
Reduce the fraction \frac{3600}{2500} to lowest terms by extracting and canceling out 100.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\frac{36}{25}+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=\frac{36}{25}+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=\frac{169}{100}
Add \frac{36}{25} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{2}\right)^{2}=\frac{169}{100}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{169}{100}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{13}{10} x+\frac{1}{2}=-\frac{13}{10}
Simplify.
x=\frac{4}{5} x=-\frac{9}{5}
Subtract \frac{1}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}