Solve for A (complex solution)
\left\{\begin{matrix}A=\frac{19x}{B\left(62500BC-1\right)}\text{, }&\left(C=0\text{ or }B\neq \frac{1}{62500C}\right)\text{ and }B\neq 0\\A\in \mathrm{C}\text{, }&\left(x=0\text{ and }B=0\right)\text{ or }\left(x=0\text{ and }B=\frac{1}{62500C}\text{ and }C\neq 0\right)\end{matrix}\right.
Solve for A
\left\{\begin{matrix}A=\frac{19x}{B\left(62500BC-1\right)}\text{, }&\left(C=0\text{ or }B\neq \frac{1}{62500C}\right)\text{ and }B\neq 0\\A\in \mathrm{R}\text{, }&\left(x=0\text{ and }B=0\right)\text{ or }\left(x=0\text{ and }B=\frac{1}{62500C}\text{ and }C\neq 0\right)\end{matrix}\right.
Solve for B (complex solution)
\left\{\begin{matrix}B=\frac{\sqrt{A\left(4750000Cx+A\right)}+A}{125000AC}\text{; }B=\frac{-\sqrt{A\left(4750000Cx+A\right)}+A}{125000AC}\text{, }&C\neq 0\text{ and }A\neq 0\\B=-\frac{19x}{A}\text{, }&C=0\text{ and }A\neq 0\\B\in \mathrm{C}\text{, }&A=0\text{ and }x=0\end{matrix}\right.
Solve for B
\left\{\begin{matrix}B=\frac{\sqrt{A\left(4750000Cx+A\right)}+A}{125000AC}\text{; }B=\frac{-\sqrt{A\left(4750000Cx+A\right)}+A}{125000AC}\text{, }&\left(C\neq 0\text{ and }x\neq 0\text{ and }A=-4750000Cx\right)\text{ or }\left(C\neq 0\text{ and }A\leq -4750000Cx\text{ and }A<0\right)\text{ or }\left(C\neq 0\text{ and }A\geq -4750000Cx\text{ and }A>0\right)\\B=-\frac{19x}{A}\text{, }&C=0\text{ and }A\neq 0\\B\in \mathrm{R}\text{, }&A=0\text{ and }x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
2500AB^{2}\times 25C=19x+AB
Multiply B and B to get B^{2}.
62500AB^{2}C=19x+AB
Multiply 2500 and 25 to get 62500.
62500AB^{2}C-AB=19x
Subtract AB from both sides.
\left(62500B^{2}C-B\right)A=19x
Combine all terms containing A.
\left(62500CB^{2}-B\right)A=19x
The equation is in standard form.
\frac{\left(62500CB^{2}-B\right)A}{62500CB^{2}-B}=\frac{19x}{62500CB^{2}-B}
Divide both sides by 62500CB^{2}-B.
A=\frac{19x}{62500CB^{2}-B}
Dividing by 62500CB^{2}-B undoes the multiplication by 62500CB^{2}-B.
A=\frac{19x}{B\left(62500BC-1\right)}
Divide 19x by 62500CB^{2}-B.
2500AB^{2}\times 25C=19x+AB
Multiply B and B to get B^{2}.
62500AB^{2}C=19x+AB
Multiply 2500 and 25 to get 62500.
62500AB^{2}C-AB=19x
Subtract AB from both sides.
\left(62500B^{2}C-B\right)A=19x
Combine all terms containing A.
\left(62500CB^{2}-B\right)A=19x
The equation is in standard form.
\frac{\left(62500CB^{2}-B\right)A}{62500CB^{2}-B}=\frac{19x}{62500CB^{2}-B}
Divide both sides by 62500CB^{2}-B.
A=\frac{19x}{62500CB^{2}-B}
Dividing by 62500CB^{2}-B undoes the multiplication by 62500CB^{2}-B.
A=\frac{19x}{B\left(62500BC-1\right)}
Divide 19x by 62500CB^{2}-B.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}