Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

-10t^{2}=-2500
Subtract 2500 from both sides. Anything subtracted from zero gives its negation.
t^{2}=\frac{-2500}{-10}
Divide both sides by -10.
t^{2}=250
Divide -2500 by -10 to get 250.
t=5\sqrt{10} t=-5\sqrt{10}
Take the square root of both sides of the equation.
-10t^{2}+2500=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
t=\frac{0±\sqrt{0^{2}-4\left(-10\right)\times 2500}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, 0 for b, and 2500 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\left(-10\right)\times 2500}}{2\left(-10\right)}
Square 0.
t=\frac{0±\sqrt{40\times 2500}}{2\left(-10\right)}
Multiply -4 times -10.
t=\frac{0±\sqrt{100000}}{2\left(-10\right)}
Multiply 40 times 2500.
t=\frac{0±100\sqrt{10}}{2\left(-10\right)}
Take the square root of 100000.
t=\frac{0±100\sqrt{10}}{-20}
Multiply 2 times -10.
t=-5\sqrt{10}
Now solve the equation t=\frac{0±100\sqrt{10}}{-20} when ± is plus.
t=5\sqrt{10}
Now solve the equation t=\frac{0±100\sqrt{10}}{-20} when ± is minus.
t=-5\sqrt{10} t=5\sqrt{10}
The equation is now solved.