Evaluate
\frac{625}{216}\approx 2.893518519
Factor
\frac{5 ^ {4}}{2 ^ {3} \cdot 3 ^ {3}} = 2\frac{193}{216} = 2.8935185185185186
Share
Copied to clipboard
\begin{array}{l}\phantom{864)}\phantom{1}\\864\overline{)2500}\\\end{array}
Use the 1^{st} digit 2 from dividend 2500
\begin{array}{l}\phantom{864)}0\phantom{2}\\864\overline{)2500}\\\end{array}
Since 2 is less than 864, use the next digit 5 from dividend 2500 and add 0 to the quotient
\begin{array}{l}\phantom{864)}0\phantom{3}\\864\overline{)2500}\\\end{array}
Use the 2^{nd} digit 5 from dividend 2500
\begin{array}{l}\phantom{864)}00\phantom{4}\\864\overline{)2500}\\\end{array}
Since 25 is less than 864, use the next digit 0 from dividend 2500 and add 0 to the quotient
\begin{array}{l}\phantom{864)}00\phantom{5}\\864\overline{)2500}\\\end{array}
Use the 3^{rd} digit 0 from dividend 2500
\begin{array}{l}\phantom{864)}000\phantom{6}\\864\overline{)2500}\\\end{array}
Since 250 is less than 864, use the next digit 0 from dividend 2500 and add 0 to the quotient
\begin{array}{l}\phantom{864)}000\phantom{7}\\864\overline{)2500}\\\end{array}
Use the 4^{th} digit 0 from dividend 2500
\begin{array}{l}\phantom{864)}0002\phantom{8}\\864\overline{)2500}\\\phantom{864)}\underline{\phantom{}1728\phantom{}}\\\phantom{864)9}772\\\end{array}
Find closest multiple of 864 to 2500. We see that 2 \times 864 = 1728 is the nearest. Now subtract 1728 from 2500 to get reminder 772. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }772
Since 772 is less than 864, stop the division. The reminder is 772. The topmost line 0002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}