2500 = \frac { 25 \times 9,8 } { k _ { f } - 0 }
Solve for k_f
k_{f}=0,098
Share
Copied to clipboard
2500k_{f}=25\times 9,8
Variable k_{f} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by k_{f}.
2500k_{f}=245
The equation is in standard form.
\frac{2500k_{f}}{2500}=\frac{245}{2500}
Divide both sides by 2500.
k_{f}=\frac{245}{2500}
Dividing by 2500 undoes the multiplication by 2500.
k_{f}=\frac{49}{500}
Reduce the fraction \frac{245}{2500} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}