Solve for x
x=\frac{\log_{\frac{37}{7}}\left(2.5\right)}{12}\approx 0.045860183
Solve for x (complex solution)
x=\frac{i\pi n_{1}}{6\ln(\frac{37}{7})}-\frac{\log_{\frac{37}{7}}\left(0.4\right)}{12}
n_{1}\in \mathrm{Z}
Graph
Share
Copied to clipboard
\frac{2500}{1000}=\left(1+\frac{12}{2.8}\right)^{12x}
Divide both sides by 1000.
\frac{5}{2}=\left(1+\frac{12}{2.8}\right)^{12x}
Reduce the fraction \frac{2500}{1000} to lowest terms by extracting and canceling out 500.
\frac{5}{2}=\left(1+\frac{120}{28}\right)^{12x}
Expand \frac{12}{2.8} by multiplying both numerator and the denominator by 10.
\frac{5}{2}=\left(1+\frac{30}{7}\right)^{12x}
Reduce the fraction \frac{120}{28} to lowest terms by extracting and canceling out 4.
\frac{5}{2}=\left(\frac{37}{7}\right)^{12x}
Add 1 and \frac{30}{7} to get \frac{37}{7}.
\left(\frac{37}{7}\right)^{12x}=\frac{5}{2}
Swap sides so that all variable terms are on the left hand side.
\log(\left(\frac{37}{7}\right)^{12x})=\log(\frac{5}{2})
Take the logarithm of both sides of the equation.
12x\log(\frac{37}{7})=\log(\frac{5}{2})
The logarithm of a number raised to a power is the power times the logarithm of the number.
12x=\frac{\log(\frac{5}{2})}{\log(\frac{37}{7})}
Divide both sides by \log(\frac{37}{7}).
12x=\log_{\frac{37}{7}}\left(\frac{5}{2}\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=\frac{\ln(\frac{5}{2})}{12\ln(\frac{37}{7})}
Divide both sides by 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}