Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

250x^{2}=24
Multiply x and x to get x^{2}.
x^{2}=\frac{24}{250}
Divide both sides by 250.
x^{2}=\frac{12}{125}
Reduce the fraction \frac{24}{250} to lowest terms by extracting and canceling out 2.
x=\frac{2\sqrt{15}}{25} x=-\frac{2\sqrt{15}}{25}
Take the square root of both sides of the equation.
250x^{2}=24
Multiply x and x to get x^{2}.
250x^{2}-24=0
Subtract 24 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 250\left(-24\right)}}{2\times 250}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 250 for a, 0 for b, and -24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 250\left(-24\right)}}{2\times 250}
Square 0.
x=\frac{0±\sqrt{-1000\left(-24\right)}}{2\times 250}
Multiply -4 times 250.
x=\frac{0±\sqrt{24000}}{2\times 250}
Multiply -1000 times -24.
x=\frac{0±40\sqrt{15}}{2\times 250}
Take the square root of 24000.
x=\frac{0±40\sqrt{15}}{500}
Multiply 2 times 250.
x=\frac{2\sqrt{15}}{25}
Now solve the equation x=\frac{0±40\sqrt{15}}{500} when ± is plus.
x=-\frac{2\sqrt{15}}{25}
Now solve the equation x=\frac{0±40\sqrt{15}}{500} when ± is minus.
x=\frac{2\sqrt{15}}{25} x=-\frac{2\sqrt{15}}{25}
The equation is now solved.