Solve for x
x=\frac{2\sqrt{15}}{25}\approx 0.309838668
x=-\frac{2\sqrt{15}}{25}\approx -0.309838668
Graph
Share
Copied to clipboard
250x^{2}=24
Multiply x and x to get x^{2}.
x^{2}=\frac{24}{250}
Divide both sides by 250.
x^{2}=\frac{12}{125}
Reduce the fraction \frac{24}{250} to lowest terms by extracting and canceling out 2.
x=\frac{2\sqrt{15}}{25} x=-\frac{2\sqrt{15}}{25}
Take the square root of both sides of the equation.
250x^{2}=24
Multiply x and x to get x^{2}.
250x^{2}-24=0
Subtract 24 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 250\left(-24\right)}}{2\times 250}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 250 for a, 0 for b, and -24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 250\left(-24\right)}}{2\times 250}
Square 0.
x=\frac{0±\sqrt{-1000\left(-24\right)}}{2\times 250}
Multiply -4 times 250.
x=\frac{0±\sqrt{24000}}{2\times 250}
Multiply -1000 times -24.
x=\frac{0±40\sqrt{15}}{2\times 250}
Take the square root of 24000.
x=\frac{0±40\sqrt{15}}{500}
Multiply 2 times 250.
x=\frac{2\sqrt{15}}{25}
Now solve the equation x=\frac{0±40\sqrt{15}}{500} when ± is plus.
x=-\frac{2\sqrt{15}}{25}
Now solve the equation x=\frac{0±40\sqrt{15}}{500} when ± is minus.
x=\frac{2\sqrt{15}}{25} x=-\frac{2\sqrt{15}}{25}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}