Solve for x
x = \frac{176}{3} = 58\frac{2}{3} \approx 58.666666667
Graph
Share
Copied to clipboard
250\times 15\left(-x+60\right)=5000
Variable x cannot be equal to 60 since division by zero is not defined. Multiply both sides of the equation by -x+60.
3750\left(-x+60\right)=5000
Multiply 250 and 15 to get 3750.
-3750x+225000=5000
Use the distributive property to multiply 3750 by -x+60.
-3750x=5000-225000
Subtract 225000 from both sides.
-3750x=-220000
Subtract 225000 from 5000 to get -220000.
x=\frac{-220000}{-3750}
Divide both sides by -3750.
x=\frac{176}{3}
Reduce the fraction \frac{-220000}{-3750} to lowest terms by extracting and canceling out -1250.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}