Evaluate
\frac{10}{7}\approx 1.428571429
Factor
\frac{2 \cdot 5}{7} = 1\frac{3}{7} = 1.4285714285714286
Share
Copied to clipboard
\begin{array}{l}\phantom{175)}\phantom{1}\\175\overline{)250}\\\end{array}
Use the 1^{st} digit 2 from dividend 250
\begin{array}{l}\phantom{175)}0\phantom{2}\\175\overline{)250}\\\end{array}
Since 2 is less than 175, use the next digit 5 from dividend 250 and add 0 to the quotient
\begin{array}{l}\phantom{175)}0\phantom{3}\\175\overline{)250}\\\end{array}
Use the 2^{nd} digit 5 from dividend 250
\begin{array}{l}\phantom{175)}00\phantom{4}\\175\overline{)250}\\\end{array}
Since 25 is less than 175, use the next digit 0 from dividend 250 and add 0 to the quotient
\begin{array}{l}\phantom{175)}00\phantom{5}\\175\overline{)250}\\\end{array}
Use the 3^{rd} digit 0 from dividend 250
\begin{array}{l}\phantom{175)}001\phantom{6}\\175\overline{)250}\\\phantom{175)}\underline{\phantom{}175\phantom{}}\\\phantom{175)9}75\\\end{array}
Find closest multiple of 175 to 250. We see that 1 \times 175 = 175 is the nearest. Now subtract 175 from 250 to get reminder 75. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }75
Since 75 is less than 175, stop the division. The reminder is 75. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}