Evaluate
\frac{50}{3}\approx 16.666666667
Factor
\frac{2 \cdot 5 ^ {2}}{3} = 16\frac{2}{3} = 16.666666666666668
Share
Copied to clipboard
\begin{array}{l}\phantom{15)}\phantom{1}\\15\overline{)250}\\\end{array}
Use the 1^{st} digit 2 from dividend 250
\begin{array}{l}\phantom{15)}0\phantom{2}\\15\overline{)250}\\\end{array}
Since 2 is less than 15, use the next digit 5 from dividend 250 and add 0 to the quotient
\begin{array}{l}\phantom{15)}0\phantom{3}\\15\overline{)250}\\\end{array}
Use the 2^{nd} digit 5 from dividend 250
\begin{array}{l}\phantom{15)}01\phantom{4}\\15\overline{)250}\\\phantom{15)}\underline{\phantom{}15\phantom{9}}\\\phantom{15)}10\\\end{array}
Find closest multiple of 15 to 25. We see that 1 \times 15 = 15 is the nearest. Now subtract 15 from 25 to get reminder 10. Add 1 to quotient.
\begin{array}{l}\phantom{15)}01\phantom{5}\\15\overline{)250}\\\phantom{15)}\underline{\phantom{}15\phantom{9}}\\\phantom{15)}100\\\end{array}
Use the 3^{rd} digit 0 from dividend 250
\begin{array}{l}\phantom{15)}016\phantom{6}\\15\overline{)250}\\\phantom{15)}\underline{\phantom{}15\phantom{9}}\\\phantom{15)}100\\\phantom{15)}\underline{\phantom{9}90\phantom{}}\\\phantom{15)9}10\\\end{array}
Find closest multiple of 15 to 100. We see that 6 \times 15 = 90 is the nearest. Now subtract 90 from 100 to get reminder 10. Add 6 to quotient.
\text{Quotient: }16 \text{Reminder: }10
Since 10 is less than 15, stop the division. The reminder is 10. The topmost line 016 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}