Evaluate
-\frac{\sqrt{3}}{4}+25\approx 24.566987298
Share
Copied to clipboard
25-\sqrt{\frac{1}{\frac{27}{3}-\frac{11}{3}}}
Convert 9 to fraction \frac{27}{3}.
25-\sqrt{\frac{1}{\frac{27-11}{3}}}
Since \frac{27}{3} and \frac{11}{3} have the same denominator, subtract them by subtracting their numerators.
25-\sqrt{\frac{1}{\frac{16}{3}}}
Subtract 11 from 27 to get 16.
25-\sqrt{1\times \frac{3}{16}}
Divide 1 by \frac{16}{3} by multiplying 1 by the reciprocal of \frac{16}{3}.
25-\sqrt{\frac{3}{16}}
Multiply 1 and \frac{3}{16} to get \frac{3}{16}.
25-\frac{\sqrt{3}}{\sqrt{16}}
Rewrite the square root of the division \sqrt{\frac{3}{16}} as the division of square roots \frac{\sqrt{3}}{\sqrt{16}}.
25-\frac{\sqrt{3}}{4}
Calculate the square root of 16 and get 4.
\frac{25\times 4}{4}-\frac{\sqrt{3}}{4}
To add or subtract expressions, expand them to make their denominators the same. Multiply 25 times \frac{4}{4}.
\frac{25\times 4-\sqrt{3}}{4}
Since \frac{25\times 4}{4} and \frac{\sqrt{3}}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{100-\sqrt{3}}{4}
Do the multiplications in 25\times 4-\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}